同宿轨道
数学
轨道(动力学)
稳定流形
类型(生物学)
交叉口(航空)
异斜眶
数学分析
双曲平衡点
周期轨道
横向(组合学)
马蹄铁(符号)
欧几里德几何
纯数学
双曲流形
几何学
双曲函数
分叉
非线性系统
物理
工程类
航空航天工程
程序设计语言
生物
量子力学
计算机科学
生态学
作者
Xu Zhang,Guanrong Chen
标识
DOI:10.1007/s10883-021-09582-x
摘要
A new geometric criterion is derived for the existence of chaos in continuous-time autonomous systems in three-dimensional Euclidean spaces, where a type of Smale horseshoe in a subshift of finite type exists, but the intersection of stable and unstable manifolds of two points on a hyperbolic periodic orbit does not imply the existence of a Smale horseshoe of the same type on cross-sections of these two points. This criterion is based on the existence of a hyperbolic periodic orbit, differing from the classical equilibrium-based Shilnikov criterion and the condition of transversal homoclinic or heteroclinic orbits of Poincar\'{e} maps.
科研通智能强力驱动
Strongly Powered by AbleSci AI