Gene isoforms as expression-based biomarkers predictive of drug response in vitro

药物基因组学 医学 计算生物学 生物标志物发现 生物标志物 生物信息学 精密医学 基因组学 药物反应 基因表达谱 药品 生物信息学 基因表达 生物 蛋白质组学 基因组 基因 药理学 病理 遗传学
作者
Zhaleh Safikhani,Kelsie L. Thu,P. Smironov,Benjamin Haibe‐Kains
出处
期刊:Annals of Oncology [Elsevier]
卷期号:28: i12-i12 被引量:2
标识
DOI:10.1093/annonc/mdx138.008
摘要

Introduction: Advances in genome-wide molecular profiling and high-throughput drug screening technologies offer an unique opportunity to identify novel biomarkers predictive of response to anticancer therapies. The vast majority of predictive biomarkers for targeted therapies are based on genetic aberrations or protein expressions, as opposed to transcriptomic biomarkers. However, the recent adoption of next-generation sequencing technologies enables accurate profiling of not only gene expression but also alternative and trans-spliced transcripts in pharmacogenomic studies. Methods: We applied multiple machine learning modeling techniques towards identification of transcriptomic biomarkers for drug response in cancer. To address the lack of reproducibility of drug sensitivity measurements across studies, we developed a framework to combine the pharmacological data from large studies, the Cancer Cell Line Encyclopedia (CCLE), the Genomics of Drug Sensitivity in Cancer (GDSC), Cancer Therapeutic Response Portal version two (CTRPv2) Genentech Compound Screening Initiative (gCSI). Our framework consists of fitting predictive models using the cell lines RNA-seq profiles as predictor variables, controlled for tissue type and batch indicators, and combined drug sensitivity calls from mentioned studies as dependent variables. The accuracy and significance of the fitted models have been assessed using cross-validation. Results: Independent pharmacogenomic datasets developed by the Gray and Neel laboratories have been exploited to validate the biomarkers that predict the response of breast cancer cell lines. We validated in vitro our most promising in silico predictions, such as NM_004207(SLC16a3002) as a significant predictive biomarker for the MEK inhibitor AZD6244. Conclusion: Despite initial promises, biomarker discovery from large pharmacogenomic datasets did not fully realize their potential, with only few robust biomarkers being reproduced across studies. Our study is the first to implement a meta-analysis pipeline of such valuable data, opening new avenues of research for the identification of isoform-based biomarkers predictive of response to targeted therapies in breast cancer. Legal entity responsible for the study: University Health Network Funding: Cancer Research Society Disclosure: All authors have declared no conflicts of interest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meditator发布了新的文献求助10
1秒前
YIlong发布了新的文献求助10
2秒前
tcmlida发布了新的文献求助30
3秒前
3秒前
yan1994发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
8秒前
9秒前
yanxueyi完成签到 ,获得积分10
9秒前
9秒前
华仔应助冷酷鹤轩采纳,获得10
10秒前
一条咸鱼发布了新的文献求助10
10秒前
邓娟完成签到,获得积分10
10秒前
糊涂的剑发布了新的文献求助10
12秒前
LIANG发布了新的文献求助10
13秒前
鲍尔槐发布了新的文献求助10
14秒前
15秒前
一条咸鱼完成签到,获得积分10
17秒前
17秒前
17秒前
冷风吹6666完成签到,获得积分10
19秒前
sfzz完成签到,获得积分10
19秒前
负责的高烽关注了科研通微信公众号
20秒前
20秒前
22秒前
科研通AI2S应助LIANG采纳,获得10
22秒前
冷酷鹤轩完成签到,获得积分10
24秒前
Hello应助糊涂的剑采纳,获得10
24秒前
鳗鱼鞋垫发布了新的文献求助10
25秒前
ok123完成签到 ,获得积分10
25秒前
yan1994完成签到,获得积分10
26秒前
fancy发布了新的文献求助10
27秒前
冷酷鹤轩发布了新的文献求助10
27秒前
专注寻菱发布了新的文献求助10
27秒前
林大侠完成签到,获得积分10
28秒前
30秒前
肖兔子哇完成签到 ,获得积分10
30秒前
Hart发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441528
求助须知:如何正确求助?哪些是违规求助? 3038152
关于积分的说明 8970749
捐赠科研通 2726439
什么是DOI,文献DOI怎么找? 1495472
科研通“疑难数据库(出版商)”最低求助积分说明 691208
邀请新用户注册赠送积分活动 688232