计算机科学
顺序装配
参考基因组
软件
成对比较
数据挖掘
基因组
麻省理工许可证
霰弹枪测序
计算生物学
过程(计算)
质量(理念)
生物
遗传学
程序设计语言
人工智能
基因
基因表达
转录组
哲学
认识论
作者
Daniel Mapleson,Gonzalo Garcia Accinelli,George Kettleborough,Jonathan Wright,Bernardo J. Clavijo
出处
期刊:Bioinformatics
[Oxford University Press]
日期:2016-11-28
卷期号:33 (4): 574-576
被引量:395
标识
DOI:10.1093/bioinformatics/btw663
摘要
De novo assembly of whole genome shotgun (WGS) next-generation sequencing (NGS) data benefits from high-quality input with high coverage. However, in practice, determining the quality and quantity of useful reads quickly and in a reference-free manner is not trivial. Gaining a better understanding of the WGS data, and how that data is utilized by assemblers, provides useful insights that can inform the assembly process and result in better assemblies.We present the K-mer Analysis Toolkit (KAT): a multi-purpose software toolkit for reference-free quality control (QC) of WGS reads and de novo genome assemblies, primarily via their k-mer frequencies and GC composition. KAT enables users to assess levels of errors, bias and contamination at various stages of the assembly process. In this paper we highlight KAT's ability to provide valuable insights into assembly composition and quality of genome assemblies through pairwise comparison of k-mers present in both input reads and the assemblies.KAT is available under the GPLv3 license at: https://github.com/TGAC/KAT .bernardo.clavijo@earlham.ac.uk.Supplementary data are available at Bioinformatics online.
科研通智能强力驱动
Strongly Powered by AbleSci AI