Research on low-carbon diffusion considering the game among enterprises in the complex network context

扩散 背景(考古学) 晋升(国际象棋) 碳纤维 编队网络 环境经济学 业务 产业组织 营销 经济 计算机科学 复合数 法学 古生物学 万维网 物理 热力学 政治 生物 政治学 算法
作者
Lu Wang,Junjun Zheng
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:210: 1-11 被引量:86
标识
DOI:10.1016/j.jclepro.2018.10.297
摘要

Considering the game among enterprises, this paper studies low-carbon diffusion problem from the perspective of network characteristics and consumers' environmental awareness. Under the scenario of heterogeneous environmental awareness, the low-carbon diffusion model based on evolutionary game theory and complex network theory is established to describe the game of enterprises' low-carbon strategy adoption in the network and the strategy learning among network neighbors. Simulation analysis in complex networks reveals the roles of network characteristics such as average degree, degree distribution and consumers' environmental awareness played in low-carbon diffusion. The results show that increasing the connections among enterprises in the industry can help the spread of low-carbon strategies. However, the diffusion potential of the network is largely exploited when the average degree exceeds 6, and the low-carbon strategies spread slowly afterwards. A certain percentage of green consumers drives this certain percentage of enterprises to implement low-carbon strategies approximately in equilibrium which indicates that the low-carbon diffusion rate can reach 100% when all consumers become green consumers who are willing and able to pay for low-carbon premium. White customers contribute to the spread of low-carbon strategies, but the promotion effect is not as good as green customers. The small-world (SW) network is more efficiently than the scale-free (SF) network in low-carbon diffusion when consumers' environmental awareness is low. However, when the consumers' environmental awareness is higher than a certain value, the SF network has a higher diffusion rate in equilibrium than the SW network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dada发布了新的文献求助50
1秒前
1秒前
充电宝应助lcj1014采纳,获得10
3秒前
3秒前
狂奔弟弟2完成签到 ,获得积分10
4秒前
zzzccclll发布了新的文献求助10
5秒前
嘴角微微仰起笑应助wwbb采纳,获得10
5秒前
科研巨额发布了新的文献求助10
6秒前
7秒前
8秒前
lalala完成签到,获得积分10
8秒前
英俊的铭应助Violet采纳,获得10
8秒前
HHHHTTTT发布了新的文献求助10
8秒前
9秒前
heli发布了新的文献求助10
9秒前
9秒前
狂奔弟弟完成签到 ,获得积分10
9秒前
轻松青荷完成签到,获得积分10
10秒前
安然完成签到 ,获得积分10
10秒前
zzzccclll完成签到,获得积分20
10秒前
独特的鹅完成签到,获得积分10
10秒前
10秒前
科研巨额完成签到,获得积分10
11秒前
轻松青荷发布了新的文献求助20
12秒前
华仔应助嵇慕蕊采纳,获得10
12秒前
牛马小白发布了新的文献求助10
13秒前
13秒前
13秒前
长江发布了新的文献求助10
13秒前
科研通AI2S应助12345采纳,获得30
15秒前
小宫发布了新的文献求助10
15秒前
荆玉豪完成签到,获得积分10
15秒前
15秒前
16秒前
wry完成签到,获得积分10
16秒前
lcj1014发布了新的文献求助10
16秒前
桐桐应助偶然的风41177采纳,获得10
17秒前
蓝色花生豆完成签到,获得积分10
17秒前
科研宝完成签到,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350838
求助须知:如何正确求助?哪些是违规求助? 4484158
关于积分的说明 13958205
捐赠科研通 4383562
什么是DOI,文献DOI怎么找? 2408471
邀请新用户注册赠送积分活动 1401068
关于科研通互助平台的介绍 1374476