Research on low-carbon diffusion considering the game among enterprises in the complex network context

扩散 背景(考古学) 晋升(国际象棋) 碳纤维 编队网络 环境经济学 业务 产业组织 营销 经济 计算机科学 复合数 法学 古生物学 万维网 物理 热力学 政治 生物 政治学 算法
作者
Lu Wang,Junjun Zheng
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:210: 1-11 被引量:86
标识
DOI:10.1016/j.jclepro.2018.10.297
摘要

Considering the game among enterprises, this paper studies low-carbon diffusion problem from the perspective of network characteristics and consumers' environmental awareness. Under the scenario of heterogeneous environmental awareness, the low-carbon diffusion model based on evolutionary game theory and complex network theory is established to describe the game of enterprises' low-carbon strategy adoption in the network and the strategy learning among network neighbors. Simulation analysis in complex networks reveals the roles of network characteristics such as average degree, degree distribution and consumers' environmental awareness played in low-carbon diffusion. The results show that increasing the connections among enterprises in the industry can help the spread of low-carbon strategies. However, the diffusion potential of the network is largely exploited when the average degree exceeds 6, and the low-carbon strategies spread slowly afterwards. A certain percentage of green consumers drives this certain percentage of enterprises to implement low-carbon strategies approximately in equilibrium which indicates that the low-carbon diffusion rate can reach 100% when all consumers become green consumers who are willing and able to pay for low-carbon premium. White customers contribute to the spread of low-carbon strategies, but the promotion effect is not as good as green customers. The small-world (SW) network is more efficiently than the scale-free (SF) network in low-carbon diffusion when consumers' environmental awareness is low. However, when the consumers' environmental awareness is higher than a certain value, the SF network has a higher diffusion rate in equilibrium than the SW network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满小兔子完成签到,获得积分10
刚刚
刚刚
共享精神应助phz采纳,获得10
1秒前
喵了个咪完成签到 ,获得积分10
1秒前
科研通AI5应助俭朴夜雪采纳,获得10
1秒前
1秒前
頑皮燕姿完成签到,获得积分10
1秒前
1秒前
丁德乐可发布了新的文献求助10
2秒前
Minkslion完成签到,获得积分10
2秒前
於松完成签到,获得积分10
2秒前
2秒前
yyyy发布了新的文献求助10
3秒前
稳重无剑完成签到,获得积分10
4秒前
wuha完成签到,获得积分10
4秒前
4秒前
欢喜从霜完成签到,获得积分10
5秒前
Orange应助LiShin采纳,获得10
5秒前
5秒前
欣慰友梅完成签到,获得积分10
5秒前
6秒前
llllllll发布了新的文献求助10
6秒前
6秒前
6秒前
CC完成签到,获得积分10
6秒前
wwuu发布了新的文献求助10
7秒前
shenyanlei发布了新的文献求助10
7秒前
一汁蟹发布了新的文献求助20
8秒前
大个应助绿麦盲区采纳,获得10
8秒前
雨齐完成签到,获得积分10
8秒前
茶艺如何发布了新的文献求助10
8秒前
8秒前
kk完成签到,获得积分10
9秒前
9秒前
123发布了新的文献求助10
9秒前
yyyy完成签到,获得积分10
10秒前
好好学习天天向上完成签到,获得积分10
10秒前
欣慰友梅发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762