Research on low-carbon diffusion considering the game among enterprises in the complex network context

扩散 背景(考古学) 晋升(国际象棋) 碳纤维 编队网络 环境经济学 业务 产业组织 营销 经济 计算机科学 复合数 法学 古生物学 万维网 物理 热力学 政治 生物 政治学 算法
作者
Lu Wang,Junjun Zheng
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:210: 1-11 被引量:86
标识
DOI:10.1016/j.jclepro.2018.10.297
摘要

Considering the game among enterprises, this paper studies low-carbon diffusion problem from the perspective of network characteristics and consumers' environmental awareness. Under the scenario of heterogeneous environmental awareness, the low-carbon diffusion model based on evolutionary game theory and complex network theory is established to describe the game of enterprises' low-carbon strategy adoption in the network and the strategy learning among network neighbors. Simulation analysis in complex networks reveals the roles of network characteristics such as average degree, degree distribution and consumers' environmental awareness played in low-carbon diffusion. The results show that increasing the connections among enterprises in the industry can help the spread of low-carbon strategies. However, the diffusion potential of the network is largely exploited when the average degree exceeds 6, and the low-carbon strategies spread slowly afterwards. A certain percentage of green consumers drives this certain percentage of enterprises to implement low-carbon strategies approximately in equilibrium which indicates that the low-carbon diffusion rate can reach 100% when all consumers become green consumers who are willing and able to pay for low-carbon premium. White customers contribute to the spread of low-carbon strategies, but the promotion effect is not as good as green customers. The small-world (SW) network is more efficiently than the scale-free (SF) network in low-carbon diffusion when consumers' environmental awareness is low. However, when the consumers' environmental awareness is higher than a certain value, the SF network has a higher diffusion rate in equilibrium than the SW network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
里里完成签到,获得积分10
1秒前
2秒前
华仔应助不想读书采纳,获得10
3秒前
4秒前
yyy发布了新的文献求助10
6秒前
6秒前
流落尘世完成签到,获得积分10
8秒前
飘逸小懒猪应助知来者采纳,获得80
9秒前
天天快乐应助岚12采纳,获得10
10秒前
10秒前
11秒前
11秒前
panhang发布了新的文献求助10
11秒前
优雅的听兰完成签到,获得积分20
13秒前
wendy_1006完成签到 ,获得积分10
13秒前
不想读书发布了新的文献求助10
16秒前
李健应助ruann采纳,获得10
16秒前
解语花发布了新的文献求助20
16秒前
orixero应助panhang采纳,获得10
17秒前
bkagyin应助坚强的赛凤采纳,获得10
17秒前
庄彧完成签到 ,获得积分10
18秒前
18秒前
19秒前
彭于晏应助正直阁采纳,获得10
20秒前
等待蚂蚁发布了新的文献求助20
21秒前
不想读书完成签到,获得积分10
21秒前
22秒前
小虎应助温暖的问候采纳,获得10
23秒前
ts发布了新的文献求助10
24秒前
小豆豆应助LMH采纳,获得10
24秒前
25秒前
26秒前
小刘完成签到,获得积分10
26秒前
29秒前
29秒前
ruann发布了新的文献求助10
33秒前
XU完成签到,获得积分10
33秒前
岚12发布了新的文献求助10
34秒前
大模型应助自觉紫安采纳,获得10
34秒前
坚强的赛凤完成签到,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967149
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163469
捐赠科研通 3247417
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450