已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on low-carbon diffusion considering the game among enterprises in the complex network context

扩散 背景(考古学) 晋升(国际象棋) 碳纤维 编队网络 环境经济学 业务 产业组织 营销 经济 计算机科学 复合数 法学 古生物学 万维网 物理 热力学 政治 生物 政治学 算法
作者
Lu Wang,Junjun Zheng
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:210: 1-11 被引量:86
标识
DOI:10.1016/j.jclepro.2018.10.297
摘要

Considering the game among enterprises, this paper studies low-carbon diffusion problem from the perspective of network characteristics and consumers' environmental awareness. Under the scenario of heterogeneous environmental awareness, the low-carbon diffusion model based on evolutionary game theory and complex network theory is established to describe the game of enterprises' low-carbon strategy adoption in the network and the strategy learning among network neighbors. Simulation analysis in complex networks reveals the roles of network characteristics such as average degree, degree distribution and consumers' environmental awareness played in low-carbon diffusion. The results show that increasing the connections among enterprises in the industry can help the spread of low-carbon strategies. However, the diffusion potential of the network is largely exploited when the average degree exceeds 6, and the low-carbon strategies spread slowly afterwards. A certain percentage of green consumers drives this certain percentage of enterprises to implement low-carbon strategies approximately in equilibrium which indicates that the low-carbon diffusion rate can reach 100% when all consumers become green consumers who are willing and able to pay for low-carbon premium. White customers contribute to the spread of low-carbon strategies, but the promotion effect is not as good as green customers. The small-world (SW) network is more efficiently than the scale-free (SF) network in low-carbon diffusion when consumers' environmental awareness is low. However, when the consumers' environmental awareness is higher than a certain value, the SF network has a higher diffusion rate in equilibrium than the SW network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moderater完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
7秒前
8秒前
8秒前
微笑的忆枫完成签到 ,获得积分10
8秒前
胜似闲庭信步完成签到,获得积分10
9秒前
Evan完成签到 ,获得积分10
11秒前
12秒前
czh驳回了Hello应助
12秒前
grass发布了新的文献求助10
13秒前
包容的绿蕊完成签到,获得积分20
15秒前
16秒前
俏皮白云完成签到 ,获得积分10
17秒前
清茶旧友完成签到,获得积分10
19秒前
dd发布了新的文献求助10
19秒前
HighFeng_Lei发布了新的文献求助10
20秒前
20秒前
nitsuj发布了新的文献求助10
20秒前
我是老大应助木木采纳,获得10
22秒前
24秒前
乐乐应助yehata采纳,获得10
25秒前
隐形语海完成签到 ,获得积分10
26秒前
27秒前
科研通AI5应助自由梦槐采纳,获得10
28秒前
28秒前
小王同学完成签到,获得积分10
28秒前
31秒前
科研通AI5应助没有昵称采纳,获得10
32秒前
DamenS发布了新的文献求助10
34秒前
华仔应助猪猪hero采纳,获得10
35秒前
36秒前
迅速泽洋完成签到,获得积分10
37秒前
思源应助夏日的风采纳,获得10
38秒前
xiaoying发布了新的文献求助10
41秒前
科目三应助elizabeth339采纳,获得50
42秒前
44秒前
irie发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422