Individual-specific functional connectivity markers track dimensional and categorical features of psychotic illness

分裂情感障碍 神经影像学 精神分裂症(面向对象编程) 心理学 精神病 双相情感障碍 病因学 神经科学 精神科 临床心理学 认知
作者
Danhong Wang,Meiling Li,Meiyun Wang,Franziska Schoeppe,Jianxun Ren,Huafu Chen,Döst Öngür,Roscoe O. Brady,Justin T. Baker,Hesheng Liu
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:25 (9): 2119-2129 被引量:137
标识
DOI:10.1038/s41380-018-0276-1
摘要

Neuroimaging studies of psychotic disorders have demonstrated abnormalities in structural and functional connectivity involving widespread brain networks. However, these group-level observations have failed to yield any biomarkers that can provide confirmatory evidence of a patient’s current symptoms, predict future symptoms, or predict a treatment response. Lack of precision in both neuroanatomical and clinical boundaries have likely contributed to the inability of even well-powered studies to resolve these key relationships. Here, we employed a novel approach to defining individual-specific functional connectivity in 158 patients diagnosed with schizophrenia (n = 49), schizoaffective disorder (n = 37), or bipolar disorder with psychosis (n = 72), and identified neuroimaging features that track psychotic symptoms in a dimension- or disorder-specific fashion. Using individually specified functional connectivity, we were able to estimate positive, negative, and manic symptoms that showed correlations ranging from r = 0.35 to r = 0.51 with the observed symptom scores. Comparing optimized estimation models among schizophrenia spectrum patients, positive and negative symptoms were associated with largely non-overlapping sets of cortical connections. Comparing between schizophrenia spectrum and bipolar disorder patients, the models for positive symptoms were largely non-overlapping between the two disorder classes. Finally, models derived using conventional region definition strategies performed at chance levels for most symptom domains. Individual-specific functional connectivity analyses revealed important new distinctions among cortical circuits responsible for the positive and negative symptoms, as well as key new information about how circuits underlying symptom expressions may vary depending on the underlying etiology and illness syndrome from which they manifest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花源应助恰你眉目如昨采纳,获得20
刚刚
bkagyin应助熊猫采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
Liurthis发布了新的文献求助30
2秒前
2秒前
仁爱听露完成签到 ,获得积分10
2秒前
2秒前
Polaris发布了新的文献求助10
3秒前
大个应助飘逸的翼采纳,获得10
3秒前
在在发布了新的文献求助10
4秒前
4秒前
4秒前
hailiangzheng完成签到,获得积分10
4秒前
歪歪yyyyc完成签到,获得积分10
4秒前
英姑应助怕黑白亦采纳,获得30
5秒前
5秒前
6秒前
Charlene完成签到,获得积分20
7秒前
万能图书馆应助轻松雁蓉采纳,获得10
8秒前
机灵人雄发布了新的文献求助10
8秒前
8秒前
AN1AN应助谢昊宸采纳,获得10
8秒前
失眠的耳机完成签到,获得积分10
9秒前
10秒前
千幻完成签到,获得积分10
10秒前
10秒前
Jasper应助AireenBeryl531采纳,获得10
11秒前
归尘发布了新的文献求助10
11秒前
糖布里部发布了新的文献求助10
12秒前
CWNU_HAN应助Sensons采纳,获得30
12秒前
归尘发布了新的文献求助10
13秒前
13秒前
科研通AI6应助若水三千采纳,获得10
13秒前
JamesPei应助cjq采纳,获得10
14秒前
14秒前
坦率灵槐发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
lixiao发布了新的文献求助30
16秒前
丁丁车完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039