重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning

过度拟合 肾功能 人工智能 肾脏疾病 计算机科学 超声波 机器学习 人工神经网络 深度学习 医学 模式识别(心理学) 放射科 内科学
作者
Chin‐Chi Kuo,Chun-Min Chang,Kuan‐Ting Liu,Wei-Kai Lin,Hsiu‐Yin Chiang,Chih-Wei Chung,Meng‐Ru Ho,Pei Sun,Rong-Lin Yang,Kuan-Ta Chen
出处
期刊:npj digital medicine [Springer Nature]
卷期号:2 (1) 被引量:128
标识
DOI:10.1038/s41746-019-0104-2
摘要

Prediction of kidney function and chronic kidney disease (CKD) through kidney ultrasound imaging has long been considered desirable in clinical practice because of its safety, convenience, and affordability. However, this highly desirable approach is beyond the capability of human vision. We developed a deep learning approach for automatically determining the estimated glomerular filtration rate (eGFR) and CKD status. We exploited the transfer learning technique, integrating the powerful ResNet model pretrained on an ImageNet dataset in our neural network architecture, to predict kidney function based on 4,505 kidney ultrasound images labeled using eGFRs derived from serum creatinine concentrations. To further extract the information from ultrasound images, we leveraged kidney length annotations to remove the peripheral region of the kidneys and applied various data augmentation schemes to produce additional data with variations. Bootstrap aggregation was also applied to avoid overfitting and improve the model's generalization. Moreover, the kidney function features obtained by our deep neural network were used to identify the CKD status defined by an eGFR of <60 ml/min/1.73 m2. A Pearson correlation coefficient of 0.741 indicated the strong relationship between artificial intelligence (AI)- and creatinine-based GFR estimations. Overall CKD status classification accuracy of our model was 85.6% -higher than that of experienced nephrologists (60.3%-80.1%). Our model is the first fundamental step toward realizing the potential of transforming kidney ultrasound imaging into an effective, real-time, distant screening tool. AI-GFR estimation offers the possibility of noninvasive assessment of kidney function, a key goal of AI-powered functional automation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuGe发布了新的文献求助10
刚刚
科研通AI6应助xshuang采纳,获得10
刚刚
刚刚
CHENGJIAO完成签到,获得积分20
刚刚
Anovel发布了新的文献求助10
1秒前
匹夫完成签到,获得积分10
1秒前
我是老大应助拼搏雨兰采纳,获得10
2秒前
小蘑菇应助zxy采纳,获得30
2秒前
18岁中二少年完成签到,获得积分10
2秒前
cc完成签到,获得积分10
2秒前
Jasper应助6666采纳,获得10
2秒前
asiera完成签到,获得积分10
2秒前
Emanuel完成签到,获得积分10
2秒前
zhengyf发布了新的文献求助10
2秒前
YM发布了新的文献求助10
3秒前
keke完成签到,获得积分10
3秒前
bai发布了新的文献求助10
3秒前
自然乌龟完成签到,获得积分10
3秒前
孤独安萱发布了新的文献求助10
3秒前
共享精神应助沉默的基因采纳,获得10
4秒前
CHENGJIAO发布了新的文献求助10
4秒前
4秒前
星辰大海应助郭文汇采纳,获得10
4秒前
玩命的雁丝完成签到 ,获得积分10
5秒前
6秒前
wanci应助LHHH采纳,获得10
6秒前
烟花应助婷婷采纳,获得10
6秒前
6秒前
6秒前
苡若发布了新的文献求助10
6秒前
小梁要加油完成签到,获得积分10
6秒前
自信诗桃完成签到,获得积分10
7秒前
王强发布了新的文献求助10
7秒前
HQQ发布了新的文献求助10
7秒前
酷波er应助心理可达鸭采纳,获得10
7秒前
研友_VZG7GZ应助伶俐草丛采纳,获得10
8秒前
8秒前
LYDZ2完成签到,获得积分10
8秒前
11完成签到,获得积分10
9秒前
缪盲目完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467049
求助须知:如何正确求助?哪些是违规求助? 4570696
关于积分的说明 14326942
捐赠科研通 4497263
什么是DOI,文献DOI怎么找? 2463804
邀请新用户注册赠送积分活动 1452757
关于科研通互助平台的介绍 1427612