Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning

过度拟合 肾功能 人工智能 肾脏疾病 计算机科学 超声波 机器学习 人工神经网络 深度学习 医学 模式识别(心理学) 放射科 内科学
作者
Chin‐Chi Kuo,Chun-Min Chang,Kuan‐Ting Liu,Wei-Kai Lin,Hsiu‐Yin Chiang,Chih-Wei Chung,Meng‐Ru Ho,Pei Sun,Rong-Lin Yang,Kuan-Ta Chen
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:2 (1) 被引量:128
标识
DOI:10.1038/s41746-019-0104-2
摘要

Prediction of kidney function and chronic kidney disease (CKD) through kidney ultrasound imaging has long been considered desirable in clinical practice because of its safety, convenience, and affordability. However, this highly desirable approach is beyond the capability of human vision. We developed a deep learning approach for automatically determining the estimated glomerular filtration rate (eGFR) and CKD status. We exploited the transfer learning technique, integrating the powerful ResNet model pretrained on an ImageNet dataset in our neural network architecture, to predict kidney function based on 4,505 kidney ultrasound images labeled using eGFRs derived from serum creatinine concentrations. To further extract the information from ultrasound images, we leveraged kidney length annotations to remove the peripheral region of the kidneys and applied various data augmentation schemes to produce additional data with variations. Bootstrap aggregation was also applied to avoid overfitting and improve the model's generalization. Moreover, the kidney function features obtained by our deep neural network were used to identify the CKD status defined by an eGFR of <60 ml/min/1.73 m2. A Pearson correlation coefficient of 0.741 indicated the strong relationship between artificial intelligence (AI)- and creatinine-based GFR estimations. Overall CKD status classification accuracy of our model was 85.6% -higher than that of experienced nephrologists (60.3%-80.1%). Our model is the first fundamental step toward realizing the potential of transforming kidney ultrasound imaging into an effective, real-time, distant screening tool. AI-GFR estimation offers the possibility of noninvasive assessment of kidney function, a key goal of AI-powered functional automation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
英姑应助苏木采纳,获得10
2秒前
蓝胖子发布了新的文献求助20
2秒前
2秒前
wzl发布了新的文献求助10
3秒前
安详的冰棍完成签到,获得积分10
3秒前
归尘发布了新的文献求助10
3秒前
3秒前
小谢同学发布了新的文献求助10
4秒前
4秒前
4秒前
小蘑菇应助巴拉采纳,获得10
4秒前
笃定发布了新的文献求助10
5秒前
5秒前
5秒前
ding应助Hilda007采纳,获得10
6秒前
迷人绿茶发布了新的文献求助10
6秒前
6秒前
jzyyn发布了新的文献求助10
7秒前
7秒前
桐桐应助AI imaging采纳,获得30
8秒前
大黄豆完成签到,获得积分10
8秒前
9秒前
9秒前
99999sun发布了新的文献求助10
9秒前
xiaolei完成签到 ,获得积分10
10秒前
11秒前
12秒前
妥妥酱发布了新的文献求助10
12秒前
Foch发布了新的文献求助10
12秒前
天造材发布了新的文献求助10
12秒前
NexusExplorer应助晨曦采纳,获得10
12秒前
13秒前
yao发布了新的文献求助10
13秒前
阿佑完成签到,获得积分10
13秒前
13秒前
14秒前
赘婿应助dan1029采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005534
求助须知:如何正确求助?哪些是违规求助? 4249119
关于积分的说明 13239987
捐赠科研通 4048734
什么是DOI,文献DOI怎么找? 2215036
邀请新用户注册赠送积分活动 1224973
关于科研通互助平台的介绍 1145351