Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning

过度拟合 肾功能 人工智能 肾脏疾病 计算机科学 超声波 机器学习 人工神经网络 深度学习 医学 模式识别(心理学) 放射科 内科学
作者
Chin‐Chi Kuo,Chun-Min Chang,Kuan‐Ting Liu,Wei-Kai Lin,Hsiu‐Yin Chiang,Chih-Wei Chung,Meng‐Ru Ho,Pei Sun,Rong-Lin Yang,Kuan-Ta Chen
出处
期刊:npj digital medicine [Springer Nature]
卷期号:2 (1) 被引量:128
标识
DOI:10.1038/s41746-019-0104-2
摘要

Prediction of kidney function and chronic kidney disease (CKD) through kidney ultrasound imaging has long been considered desirable in clinical practice because of its safety, convenience, and affordability. However, this highly desirable approach is beyond the capability of human vision. We developed a deep learning approach for automatically determining the estimated glomerular filtration rate (eGFR) and CKD status. We exploited the transfer learning technique, integrating the powerful ResNet model pretrained on an ImageNet dataset in our neural network architecture, to predict kidney function based on 4,505 kidney ultrasound images labeled using eGFRs derived from serum creatinine concentrations. To further extract the information from ultrasound images, we leveraged kidney length annotations to remove the peripheral region of the kidneys and applied various data augmentation schemes to produce additional data with variations. Bootstrap aggregation was also applied to avoid overfitting and improve the model's generalization. Moreover, the kidney function features obtained by our deep neural network were used to identify the CKD status defined by an eGFR of <60 ml/min/1.73 m2. A Pearson correlation coefficient of 0.741 indicated the strong relationship between artificial intelligence (AI)- and creatinine-based GFR estimations. Overall CKD status classification accuracy of our model was 85.6% -higher than that of experienced nephrologists (60.3%-80.1%). Our model is the first fundamental step toward realizing the potential of transforming kidney ultrasound imaging into an effective, real-time, distant screening tool. AI-GFR estimation offers the possibility of noninvasive assessment of kidney function, a key goal of AI-powered functional automation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
QIAN.发布了新的文献求助10
1秒前
温暖幻珊完成签到 ,获得积分10
1秒前
DYL发布了新的文献求助10
1秒前
朱信姿完成签到,获得积分10
1秒前
喜悦一德发布了新的文献求助10
1秒前
Hmzek完成签到,获得积分10
2秒前
11完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
btsforever完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
吴彦祖完成签到,获得积分10
4秒前
慕青应助刻苦的怀曼采纳,获得10
4秒前
Hello应助LDDD采纳,获得10
4秒前
明理含芙完成签到 ,获得积分10
4秒前
所所应助SYB采纳,获得10
5秒前
6秒前
6秒前
王圈发布了新的文献求助10
7秒前
jellorio发布了新的文献求助10
8秒前
云泥发布了新的文献求助10
8秒前
今夜不设防完成签到,获得积分10
8秒前
8秒前
太叔白风完成签到,获得积分10
8秒前
菌菇发布了新的文献求助30
9秒前
zz完成签到 ,获得积分10
10秒前
mumu完成签到,获得积分10
11秒前
舒适的迎梦完成签到,获得积分10
11秒前
从容寻云发布了新的文献求助10
11秒前
基2完成签到 ,获得积分10
12秒前
Lucas应助cruise采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
QIAN.完成签到,获得积分10
15秒前
llssmm给llssmm的求助进行了留言
15秒前
背后亦寒发布了新的文献求助30
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445993
求助须知:如何正确求助?哪些是违规求助? 4555152
关于积分的说明 14249970
捐赠科研通 4477453
什么是DOI,文献DOI怎么找? 2453304
邀请新用户注册赠送积分活动 1444087
关于科研通互助平台的介绍 1420028