Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning

过度拟合 肾功能 人工智能 肾脏疾病 计算机科学 超声波 机器学习 人工神经网络 深度学习 医学 模式识别(心理学) 放射科 内科学
作者
Chin‐Chi Kuo,Chun-Min Chang,Kuan‐Ting Liu,Wei-Kai Lin,Hsiu‐Yin Chiang,Chih-Wei Chung,Meng‐Ru Ho,Pei Sun,Rong-Lin Yang,Kuan-Ta Chen
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:2 (1) 被引量:128
标识
DOI:10.1038/s41746-019-0104-2
摘要

Prediction of kidney function and chronic kidney disease (CKD) through kidney ultrasound imaging has long been considered desirable in clinical practice because of its safety, convenience, and affordability. However, this highly desirable approach is beyond the capability of human vision. We developed a deep learning approach for automatically determining the estimated glomerular filtration rate (eGFR) and CKD status. We exploited the transfer learning technique, integrating the powerful ResNet model pretrained on an ImageNet dataset in our neural network architecture, to predict kidney function based on 4,505 kidney ultrasound images labeled using eGFRs derived from serum creatinine concentrations. To further extract the information from ultrasound images, we leveraged kidney length annotations to remove the peripheral region of the kidneys and applied various data augmentation schemes to produce additional data with variations. Bootstrap aggregation was also applied to avoid overfitting and improve the model's generalization. Moreover, the kidney function features obtained by our deep neural network were used to identify the CKD status defined by an eGFR of <60 ml/min/1.73 m2. A Pearson correlation coefficient of 0.741 indicated the strong relationship between artificial intelligence (AI)- and creatinine-based GFR estimations. Overall CKD status classification accuracy of our model was 85.6% -higher than that of experienced nephrologists (60.3%-80.1%). Our model is the first fundamental step toward realizing the potential of transforming kidney ultrasound imaging into an effective, real-time, distant screening tool. AI-GFR estimation offers the possibility of noninvasive assessment of kidney function, a key goal of AI-powered functional automation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夲光完成签到 ,获得积分10
1秒前
1秒前
kinji完成签到,获得积分10
1秒前
昕昕233完成签到,获得积分10
2秒前
22发布了新的文献求助10
2秒前
2秒前
2秒前
传奇3应助nzxnzx采纳,获得10
2秒前
2秒前
bkagyin应助顺利紫山采纳,获得10
3秒前
殷权威发布了新的文献求助10
3秒前
doctorbin完成签到 ,获得积分10
3秒前
遊星完成签到,获得积分10
3秒前
wyx发布了新的文献求助10
3秒前
7秒前
7秒前
wyf完成签到,获得积分20
7秒前
7秒前
汉堡包应助萤火虫采纳,获得10
8秒前
黯然发布了新的文献求助10
8秒前
充电宝应助Shinewei采纳,获得10
9秒前
9秒前
圆锥香蕉应助贵贵采纳,获得20
9秒前
9秒前
10秒前
殷权威完成签到,获得积分10
10秒前
10秒前
风出袖发布了新的文献求助30
11秒前
huangr123发布了新的文献求助10
11秒前
爱因斯宣发布了新的文献求助10
11秒前
只如初发布了新的文献求助10
12秒前
kirirto完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
黄紫红蓝发布了新的文献求助10
14秒前
15秒前
15秒前
anna1992发布了新的文献求助10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650