已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning

过度拟合 肾功能 人工智能 肾脏疾病 计算机科学 超声波 机器学习 人工神经网络 深度学习 医学 模式识别(心理学) 放射科 内科学
作者
Chin‐Chi Kuo,Chun-Min Chang,Kuan‐Ting Liu,Wei-Kai Lin,Hsiu‐Yin Chiang,Chih-Wei Chung,Meng‐Ru Ho,Pei Sun,Rong-Lin Yang,Kuan-Ta Chen
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:2 (1) 被引量:128
标识
DOI:10.1038/s41746-019-0104-2
摘要

Prediction of kidney function and chronic kidney disease (CKD) through kidney ultrasound imaging has long been considered desirable in clinical practice because of its safety, convenience, and affordability. However, this highly desirable approach is beyond the capability of human vision. We developed a deep learning approach for automatically determining the estimated glomerular filtration rate (eGFR) and CKD status. We exploited the transfer learning technique, integrating the powerful ResNet model pretrained on an ImageNet dataset in our neural network architecture, to predict kidney function based on 4,505 kidney ultrasound images labeled using eGFRs derived from serum creatinine concentrations. To further extract the information from ultrasound images, we leveraged kidney length annotations to remove the peripheral region of the kidneys and applied various data augmentation schemes to produce additional data with variations. Bootstrap aggregation was also applied to avoid overfitting and improve the model's generalization. Moreover, the kidney function features obtained by our deep neural network were used to identify the CKD status defined by an eGFR of <60 ml/min/1.73 m2. A Pearson correlation coefficient of 0.741 indicated the strong relationship between artificial intelligence (AI)- and creatinine-based GFR estimations. Overall CKD status classification accuracy of our model was 85.6% -higher than that of experienced nephrologists (60.3%-80.1%). Our model is the first fundamental step toward realizing the potential of transforming kidney ultrasound imaging into an effective, real-time, distant screening tool. AI-GFR estimation offers the possibility of noninvasive assessment of kidney function, a key goal of AI-powered functional automation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哩哩哩完成签到,获得积分10
3秒前
胡嘿嘿嘿阿什利完成签到,获得积分20
7秒前
HarisonFisher发布了新的文献求助10
9秒前
魁梧的衫完成签到 ,获得积分10
9秒前
美满的梦蕊完成签到,获得积分20
10秒前
13秒前
落雪完成签到 ,获得积分10
16秒前
dzjin发布了新的文献求助10
17秒前
sanmao关注了科研通微信公众号
18秒前
毛舒敏完成签到 ,获得积分10
19秒前
20秒前
dzjin完成签到,获得积分10
22秒前
沉静镜子完成签到,获得积分20
23秒前
qzp完成签到 ,获得积分10
24秒前
体贴白桃发布了新的文献求助10
26秒前
打打应助剧院的饭桶采纳,获得30
26秒前
33秒前
FashionBoy应助雾起时采纳,获得10
33秒前
39秒前
Yuki完成签到 ,获得积分10
42秒前
43秒前
雾起时应助文件撤销了驳回
44秒前
研友_VZG7GZ应助体贴白桃采纳,获得10
44秒前
45秒前
净禅完成签到 ,获得积分10
45秒前
47秒前
胡图图啦啦完成签到 ,获得积分10
50秒前
sanmao发布了新的文献求助10
51秒前
54秒前
Hello应助欢呼的金毛采纳,获得10
55秒前
LLLi完成签到,获得积分10
57秒前
SciKid524完成签到 ,获得积分10
57秒前
无心发布了新的文献求助10
59秒前
Phoenix完成签到 ,获得积分10
59秒前
科目三应助简晴采纳,获得10
1分钟前
1分钟前
1分钟前
nenoaowu应助科研通管家采纳,获得30
1分钟前
nenoaowu应助科研通管家采纳,获得30
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172728
求助须知:如何正确求助?哪些是违规求助? 4362879
关于积分的说明 13584664
捐赠科研通 4211071
什么是DOI,文献DOI怎么找? 2309618
邀请新用户注册赠送积分活动 1308708
关于科研通互助平台的介绍 1255915