Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning

过度拟合 肾功能 人工智能 肾脏疾病 计算机科学 超声波 机器学习 人工神经网络 深度学习 医学 模式识别(心理学) 放射科 内科学
作者
Chin‐Chi Kuo,Chun-Min Chang,Kuan‐Ting Liu,Wei-Kai Lin,Hsiu‐Yin Chiang,Chih-Wei Chung,Meng‐Ru Ho,Pei Sun,Rong-Lin Yang,Kuan-Ta Chen
出处
期刊:npj digital medicine [Springer Nature]
卷期号:2 (1) 被引量:128
标识
DOI:10.1038/s41746-019-0104-2
摘要

Prediction of kidney function and chronic kidney disease (CKD) through kidney ultrasound imaging has long been considered desirable in clinical practice because of its safety, convenience, and affordability. However, this highly desirable approach is beyond the capability of human vision. We developed a deep learning approach for automatically determining the estimated glomerular filtration rate (eGFR) and CKD status. We exploited the transfer learning technique, integrating the powerful ResNet model pretrained on an ImageNet dataset in our neural network architecture, to predict kidney function based on 4,505 kidney ultrasound images labeled using eGFRs derived from serum creatinine concentrations. To further extract the information from ultrasound images, we leveraged kidney length annotations to remove the peripheral region of the kidneys and applied various data augmentation schemes to produce additional data with variations. Bootstrap aggregation was also applied to avoid overfitting and improve the model's generalization. Moreover, the kidney function features obtained by our deep neural network were used to identify the CKD status defined by an eGFR of <60 ml/min/1.73 m2. A Pearson correlation coefficient of 0.741 indicated the strong relationship between artificial intelligence (AI)- and creatinine-based GFR estimations. Overall CKD status classification accuracy of our model was 85.6% -higher than that of experienced nephrologists (60.3%-80.1%). Our model is the first fundamental step toward realizing the potential of transforming kidney ultrasound imaging into an effective, real-time, distant screening tool. AI-GFR estimation offers the possibility of noninvasive assessment of kidney function, a key goal of AI-powered functional automation in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子发布了新的文献求助10
刚刚
1秒前
2秒前
小志发布了新的文献求助10
3秒前
所所应助青团采纳,获得10
3秒前
huanger完成签到,获得积分0
4秒前
隐形曼青应助lyang采纳,获得10
5秒前
疯狂的石头完成签到 ,获得积分10
5秒前
kawhiiii发布了新的文献求助10
6秒前
酷酷的安柏完成签到 ,获得积分10
6秒前
韩老魔完成签到,获得积分10
7秒前
darkpigx完成签到,获得积分10
7秒前
飞翔的梦完成签到,获得积分10
7秒前
求助人员应助栗子采纳,获得10
8秒前
呆呆完成签到 ,获得积分10
8秒前
远鹤完成签到 ,获得积分10
9秒前
可爱的函函应助遇见采纳,获得10
10秒前
12秒前
Owen应助憨憨采纳,获得10
12秒前
情怀应助Wanan采纳,获得10
13秒前
vivian发布了新的文献求助10
13秒前
nextconnie完成签到,获得积分10
13秒前
清爽的机器猫完成签到 ,获得积分10
14秒前
醉熏的菲鹰完成签到 ,获得积分10
15秒前
Eric完成签到,获得积分10
15秒前
15秒前
阳光绿柏完成签到,获得积分10
15秒前
kyf发布了新的文献求助10
16秒前
讲座梅郎完成签到,获得积分10
17秒前
一苇以航完成签到 ,获得积分10
17秒前
田様应助好运莲莲采纳,获得10
18秒前
咖啡苦咔咔完成签到 ,获得积分10
18秒前
wanci应助关畅澎采纳,获得10
18秒前
PPP完成签到,获得积分10
18秒前
Aliya完成签到 ,获得积分10
18秒前
风中醉蝶发布了新的文献求助10
18秒前
可心儿完成签到,获得积分20
19秒前
CipherSage应助vivian采纳,获得10
19秒前
Slemon完成签到,获得积分10
20秒前
Verity应助枫叶采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565327
求助须知:如何正确求助?哪些是违规求助? 4650372
关于积分的说明 14690731
捐赠科研通 4592233
什么是DOI,文献DOI怎么找? 2519519
邀请新用户注册赠送积分活动 1491978
关于科研通互助平台的介绍 1463183