Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning

过度拟合 肾功能 人工智能 肾脏疾病 计算机科学 超声波 机器学习 人工神经网络 深度学习 医学 模式识别(心理学) 放射科 内科学
作者
Chin‐Chi Kuo,Chun-Min Chang,Kuan‐Ting Liu,Wei-Kai Lin,Hsiu‐Yin Chiang,Chih-Wei Chung,Meng‐Ru Ho,Pei Sun,Rong-Lin Yang,Kuan-Ta Chen
出处
期刊:npj digital medicine [Springer Nature]
卷期号:2 (1) 被引量:128
标识
DOI:10.1038/s41746-019-0104-2
摘要

Prediction of kidney function and chronic kidney disease (CKD) through kidney ultrasound imaging has long been considered desirable in clinical practice because of its safety, convenience, and affordability. However, this highly desirable approach is beyond the capability of human vision. We developed a deep learning approach for automatically determining the estimated glomerular filtration rate (eGFR) and CKD status. We exploited the transfer learning technique, integrating the powerful ResNet model pretrained on an ImageNet dataset in our neural network architecture, to predict kidney function based on 4,505 kidney ultrasound images labeled using eGFRs derived from serum creatinine concentrations. To further extract the information from ultrasound images, we leveraged kidney length annotations to remove the peripheral region of the kidneys and applied various data augmentation schemes to produce additional data with variations. Bootstrap aggregation was also applied to avoid overfitting and improve the model's generalization. Moreover, the kidney function features obtained by our deep neural network were used to identify the CKD status defined by an eGFR of <60 ml/min/1.73 m2. A Pearson correlation coefficient of 0.741 indicated the strong relationship between artificial intelligence (AI)- and creatinine-based GFR estimations. Overall CKD status classification accuracy of our model was 85.6% -higher than that of experienced nephrologists (60.3%-80.1%). Our model is the first fundamental step toward realizing the potential of transforming kidney ultrasound imaging into an effective, real-time, distant screening tool. AI-GFR estimation offers the possibility of noninvasive assessment of kidney function, a key goal of AI-powered functional automation in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弄香发布了新的文献求助10
1秒前
欣慰的白羊完成签到,获得积分10
2秒前
fanhongpeng完成签到 ,获得积分10
2秒前
2秒前
3秒前
ermiao发布了新的文献求助10
3秒前
小李子完成签到,获得积分10
5秒前
JamesPei应助曙丽盼采纳,获得10
6秒前
无极微光应助隐形的若灵采纳,获得20
6秒前
打打应助种花家的狗狗采纳,获得10
6秒前
善学以致用应助TingtingGZ采纳,获得10
6秒前
Stroeve完成签到,获得积分10
7秒前
lzylzy完成签到,获得积分10
7秒前
8秒前
8秒前
zh完成签到,获得积分10
10秒前
lzylzy发布了新的文献求助10
11秒前
12秒前
李顺利给李顺利的求助进行了留言
13秒前
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
yanghj完成签到,获得积分20
18秒前
18秒前
19秒前
莎akkk发布了新的文献求助10
20秒前
曙丽盼发布了新的文献求助10
20秒前
Hermon发布了新的文献求助10
20秒前
星辰大海应助七栀采纳,获得10
20秒前
TingtingGZ发布了新的文献求助10
21秒前
LD20000620完成签到,获得积分10
21秒前
22秒前
23秒前
hy1234完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526942
求助须知:如何正确求助?哪些是违规求助? 4616873
关于积分的说明 14556205
捐赠科研通 4555440
什么是DOI,文献DOI怎么找? 2496353
邀请新用户注册赠送积分活动 1476654
关于科研通互助平台的介绍 1448212