Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning

过度拟合 肾功能 人工智能 肾脏疾病 计算机科学 超声波 机器学习 人工神经网络 深度学习 医学 模式识别(心理学) 放射科 内科学
作者
Chin‐Chi Kuo,Chun-Min Chang,Kuan‐Ting Liu,Wei-Kai Lin,Hsiu‐Yin Chiang,Chih-Wei Chung,Meng‐Ru Ho,Pei Sun,Rong-Lin Yang,Kuan-Ta Chen
出处
期刊:npj digital medicine [Springer Nature]
卷期号:2 (1) 被引量:128
标识
DOI:10.1038/s41746-019-0104-2
摘要

Prediction of kidney function and chronic kidney disease (CKD) through kidney ultrasound imaging has long been considered desirable in clinical practice because of its safety, convenience, and affordability. However, this highly desirable approach is beyond the capability of human vision. We developed a deep learning approach for automatically determining the estimated glomerular filtration rate (eGFR) and CKD status. We exploited the transfer learning technique, integrating the powerful ResNet model pretrained on an ImageNet dataset in our neural network architecture, to predict kidney function based on 4,505 kidney ultrasound images labeled using eGFRs derived from serum creatinine concentrations. To further extract the information from ultrasound images, we leveraged kidney length annotations to remove the peripheral region of the kidneys and applied various data augmentation schemes to produce additional data with variations. Bootstrap aggregation was also applied to avoid overfitting and improve the model's generalization. Moreover, the kidney function features obtained by our deep neural network were used to identify the CKD status defined by an eGFR of <60 ml/min/1.73 m2. A Pearson correlation coefficient of 0.741 indicated the strong relationship between artificial intelligence (AI)- and creatinine-based GFR estimations. Overall CKD status classification accuracy of our model was 85.6% -higher than that of experienced nephrologists (60.3%-80.1%). Our model is the first fundamental step toward realizing the potential of transforming kidney ultrasound imaging into an effective, real-time, distant screening tool. AI-GFR estimation offers the possibility of noninvasive assessment of kidney function, a key goal of AI-powered functional automation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的斑马完成签到,获得积分10
刚刚
111222完成签到,获得积分10
2秒前
精明尔柳完成签到,获得积分10
2秒前
虎竹辉完成签到,获得积分10
4秒前
呵呵呵悦完成签到,获得积分10
6秒前
GU完成签到,获得积分10
6秒前
弹指一挥间完成签到,获得积分10
6秒前
zzz完成签到 ,获得积分10
6秒前
天天快乐应助精明尔柳采纳,获得30
7秒前
虚心醉蝶完成签到 ,获得积分10
9秒前
allrubbish完成签到,获得积分10
9秒前
舒心的茗完成签到,获得积分10
9秒前
啦啦啦啦啦完成签到,获得积分10
10秒前
licheng完成签到,获得积分10
10秒前
花开那年完成签到,获得积分10
11秒前
SaSa完成签到,获得积分10
11秒前
gms完成签到,获得积分10
12秒前
Fe2O3完成签到,获得积分10
13秒前
冷酷的墨镜完成签到,获得积分10
14秒前
淡然以蓝完成签到 ,获得积分10
15秒前
15秒前
15秒前
16秒前
Jenny应助lixiang采纳,获得30
16秒前
月亮上的猫完成签到,获得积分10
16秒前
njzhangyanyang完成签到,获得积分10
19秒前
tulips发布了新的文献求助20
19秒前
山乞凡完成签到 ,获得积分10
19秒前
蓝天小小鹰完成签到 ,获得积分10
19秒前
20秒前
二个虎牙完成签到,获得积分10
20秒前
brick2024完成签到,获得积分10
21秒前
21秒前
21秒前
雪白的夜香完成签到,获得积分10
22秒前
天天快乐应助淡定小蜜蜂采纳,获得10
22秒前
23秒前
zyxxxx完成签到,获得积分10
23秒前
cc完成签到,获得积分10
24秒前
仁爱的谷南完成签到,获得积分10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150700
求助须知:如何正确求助?哪些是违规求助? 2802232
关于积分的说明 7846614
捐赠科研通 2459579
什么是DOI,文献DOI怎么找? 1309294
科研通“疑难数据库(出版商)”最低求助积分说明 628849
版权声明 601757