Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning

过度拟合 肾功能 人工智能 肾脏疾病 计算机科学 超声波 机器学习 人工神经网络 深度学习 医学 模式识别(心理学) 放射科 内科学
作者
Chin‐Chi Kuo,Chun-Min Chang,Kuan‐Ting Liu,Wei-Kai Lin,Hsiu‐Yin Chiang,Chih-Wei Chung,Meng‐Ru Ho,Pei Sun,Rong-Lin Yang,Kuan-Ta Chen
出处
期刊:npj digital medicine [Springer Nature]
卷期号:2 (1) 被引量:128
标识
DOI:10.1038/s41746-019-0104-2
摘要

Prediction of kidney function and chronic kidney disease (CKD) through kidney ultrasound imaging has long been considered desirable in clinical practice because of its safety, convenience, and affordability. However, this highly desirable approach is beyond the capability of human vision. We developed a deep learning approach for automatically determining the estimated glomerular filtration rate (eGFR) and CKD status. We exploited the transfer learning technique, integrating the powerful ResNet model pretrained on an ImageNet dataset in our neural network architecture, to predict kidney function based on 4,505 kidney ultrasound images labeled using eGFRs derived from serum creatinine concentrations. To further extract the information from ultrasound images, we leveraged kidney length annotations to remove the peripheral region of the kidneys and applied various data augmentation schemes to produce additional data with variations. Bootstrap aggregation was also applied to avoid overfitting and improve the model's generalization. Moreover, the kidney function features obtained by our deep neural network were used to identify the CKD status defined by an eGFR of <60 ml/min/1.73 m2. A Pearson correlation coefficient of 0.741 indicated the strong relationship between artificial intelligence (AI)- and creatinine-based GFR estimations. Overall CKD status classification accuracy of our model was 85.6% -higher than that of experienced nephrologists (60.3%-80.1%). Our model is the first fundamental step toward realizing the potential of transforming kidney ultrasound imaging into an effective, real-time, distant screening tool. AI-GFR estimation offers the possibility of noninvasive assessment of kidney function, a key goal of AI-powered functional automation in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wxx完成签到 ,获得积分10
1秒前
wang发布了新的文献求助10
3秒前
Muth发布了新的文献求助10
5秒前
uu完成签到 ,获得积分10
6秒前
ayayaya完成签到 ,获得积分10
7秒前
青葱鱼块完成签到 ,获得积分10
8秒前
哇哈哈关注了科研通微信公众号
8秒前
9秒前
唐一完成签到,获得积分10
9秒前
84W1yX完成签到,获得积分10
10秒前
11秒前
无极微光应助aliderichang采纳,获得20
11秒前
慕青应助wang采纳,获得10
12秒前
共享精神应助美满的红酒采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
年轻绮波完成签到,获得积分10
14秒前
我来也完成签到 ,获得积分10
15秒前
一个西藏发布了新的文献求助10
17秒前
孙孙发布了新的文献求助10
18秒前
歇洛克驳回了852应助
18秒前
Tian完成签到,获得积分10
18秒前
Hello应助Snoopy采纳,获得10
18秒前
fge完成签到,获得积分10
20秒前
……发布了新的文献求助10
20秒前
TTLOVEDXX完成签到,获得积分10
20秒前
22秒前
小二郎应助Alarack采纳,获得10
22秒前
蟹治猿完成签到 ,获得积分10
23秒前
jitianxing发布了新的文献求助10
26秒前
酷波er应助猪猪hero采纳,获得10
26秒前
pluto应助猪猪hero采纳,获得10
26秒前
危机的阁应助猪猪hero采纳,获得30
26秒前
Lucas应助猪猪hero采纳,获得10
26秒前
26秒前
27秒前
kytzh发布了新的文献求助30
28秒前
俭朴的易烟完成签到,获得积分10
28秒前
核桃完成签到,获得积分10
31秒前
菜菜完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832