Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation

纳米柱 材料科学 去湿 成核 润湿 冷凝 聚结(物理) 表面能 化学物理 纳米技术 化学工程 纳米结构 复合材料 热力学 化学 有机化学 天体生物学 物理 工程类
作者
Shan Gao,Wei Liu,Zhichun Liu
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:11 (2): 459-466 被引量:64
标识
DOI:10.1039/c8nr05772a
摘要

Vapor condensation is widespread in natural and industrial applications. Rapid and efficient condensation plays an essential role in improving energy efficiency. Despite numerous efforts over the past few decades, the fundamental mechanism of condensation and the microscopic features of condensed droplets are not well understood. Moreover, designing a nanostructured surface with wetting contrast to enhance dropwise condensation remains unclear. Herein, through molecular dynamics simulation, we characterized the condensation processes on various nanopillar surfaces, including the nucleation, growth and coalescence of nanodroplets. During condensation, the droplet size grows linearly with time as V ∝ t, and the coalescence between small droplets can affect the resultant wetting mode of large droplets. The results indicate that the cooperation between spatially ordering nucleation and dropwise growth endows hybrid nanopillar surfaces with better heat and mass transfer performance compared with other homogeneous nanopillar surfaces. Moreover, an interesting dewetting transition occurring on hydrophobic nanopillar surface was observed during droplet growth, the nucleation site and dewetting transition were analyzed based on potential energy field of surface. By varying the geometric parameters of the nanopillar, we found that the condensation rate of the hybrid nanopillar surface increases with the increase of surface solid fraction. The dense nanopillar array can not only restrain the formation of Wenzel mode droplet, but also enhance the condensation rate, which provides a guidance for the design of hybrid nanostructured surfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然宛凝发布了新的文献求助10
1秒前
1秒前
深情安青应助zkk采纳,获得10
1秒前
李好运完成签到 ,获得积分10
2秒前
云鹏完成签到,获得积分10
2秒前
2秒前
zxfaaaaa完成签到,获得积分10
3秒前
酷波er应助ethely采纳,获得10
3秒前
4秒前
4秒前
4秒前
小郭发布了新的文献求助10
6秒前
赘婿应助大苏采纳,获得10
6秒前
拔剑起蒿莱完成签到,获得积分10
6秒前
7秒前
Lucas应助doctor_loong采纳,获得10
9秒前
10秒前
栗子完成签到,获得积分10
10秒前
11秒前
Nina完成签到,获得积分10
11秒前
8R60d8应助dw平如淡菊采纳,获得10
12秒前
Yulia完成签到 ,获得积分10
13秒前
13秒前
mendicant发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
希望天下0贩的0应助章鱼采纳,获得10
16秒前
16秒前
zkk发布了新的文献求助10
16秒前
huangyanan0120完成签到,获得积分10
16秒前
大模型应助1134695021采纳,获得10
16秒前
16秒前
zxfaaaaa发布了新的文献求助30
16秒前
17秒前
JS完成签到 ,获得积分10
17秒前
17秒前
周茹完成签到 ,获得积分10
18秒前
繁星发布了新的文献求助10
18秒前
烛黎完成签到,获得积分10
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233861
求助须知:如何正确求助?哪些是违规求助? 2880343
关于积分的说明 8214733
捐赠科研通 2547792
什么是DOI,文献DOI怎么找? 1377216
科研通“疑难数据库(出版商)”最低求助积分说明 647789
邀请新用户注册赠送积分活动 623213