Visual Quality Enhancement Of Images Under Adverse Weather Conditions

恶劣天气 卷积神经网络 计算机科学 基本事实 人工智能 质量(理念) 深度学习 感知 图像(数学) 图像质量 计算机视觉 人工神经网络 机器学习 气象学 地理 哲学 认识论 神经科学 生物
作者
Jashojit Mukhtarjee,K Praveen,Venugopala Madumbu
标识
DOI:10.1109/itsc.2018.8569536
摘要

The visual quality of an image captured by vision systems can degrade significantly under adverse weather conditions. In this paper we propose a deep learning based solution to improve the visual quality of images captured under rainy and foggy circumstances, which are among the prominent and common weather conditions that attribute to bad image quality. Our convolutional neural network(CNN), NVDeHazenet learns to predict both the original signal as well as the atmospheric light to finally restore image quality. It outperforms the existing state of the art methods by evaluation on both synthetic data as well as real world hazy images. The deraining CNN, NVDeRainNet shows similar performance on existing rain datasets as the state of the art. On natural rain images NVDeRainNet shows better than state of the art performance. We show the use of perceptual loss to improve the visual quality of results. These networks require considerable amount of data under adverse weather conditions and their respective ground truth for training. For this purpose we use a weather simulation framework to simulate synthetic rainy and foggy environments. This data is augmented with existing rain datasets to train the networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
inter发布了新的文献求助10
刚刚
6秒前
6秒前
星辰大海应助Wqian采纳,获得10
9秒前
9秒前
13秒前
21秒前
22秒前
科目三应助朴素的松采纳,获得10
23秒前
Jodie发布了新的文献求助10
26秒前
26秒前
Heinrich完成签到,获得积分10
27秒前
Lucas应助inter采纳,获得10
31秒前
无极微光应助科研通管家采纳,获得20
34秒前
Orange应助科研通管家采纳,获得10
34秒前
Verity应助科研通管家采纳,获得10
34秒前
34秒前
丘比特应助科研通管家采纳,获得10
34秒前
34秒前
苏新天完成签到 ,获得积分10
34秒前
搜集达人应助科研通管家采纳,获得10
34秒前
Liangang应助科研通管家采纳,获得10
34秒前
34秒前
搜集达人应助科研通管家采纳,获得10
34秒前
huanger应助科研通管家采纳,获得10
34秒前
桐桐应助科研通管家采纳,获得10
35秒前
斯文败类应助科研通管家采纳,获得10
35秒前
小新应助科研通管家采纳,获得10
35秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
斯文败类应助科研通管家采纳,获得10
35秒前
一叶知秋应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
37秒前
跳跃的翼完成签到,获得积分10
40秒前
健忘可愁完成签到,获得积分10
41秒前
跳跃的翼发布了新的文献求助10
42秒前
43秒前
无花果应助加百莉采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550