亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Visual Quality Enhancement Of Images Under Adverse Weather Conditions

恶劣天气 卷积神经网络 计算机科学 基本事实 人工智能 质量(理念) 深度学习 感知 图像(数学) 图像质量 计算机视觉 人工神经网络 机器学习 气象学 地理 认识论 哲学 生物 神经科学
作者
Jashojit Mukhtarjee,K Praveen,Venugopala Madumbu
标识
DOI:10.1109/itsc.2018.8569536
摘要

The visual quality of an image captured by vision systems can degrade significantly under adverse weather conditions. In this paper we propose a deep learning based solution to improve the visual quality of images captured under rainy and foggy circumstances, which are among the prominent and common weather conditions that attribute to bad image quality. Our convolutional neural network(CNN), NVDeHazenet learns to predict both the original signal as well as the atmospheric light to finally restore image quality. It outperforms the existing state of the art methods by evaluation on both synthetic data as well as real world hazy images. The deraining CNN, NVDeRainNet shows similar performance on existing rain datasets as the state of the art. On natural rain images NVDeRainNet shows better than state of the art performance. We show the use of perceptual loss to improve the visual quality of results. These networks require considerable amount of data under adverse weather conditions and their respective ground truth for training. For this purpose we use a weather simulation framework to simulate synthetic rainy and foggy environments. This data is augmented with existing rain datasets to train the networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
尊敬的芷卉完成签到,获得积分10
3秒前
霜降发布了新的文献求助10
6秒前
6秒前
7秒前
Jason完成签到 ,获得积分10
10秒前
Ykaor完成签到 ,获得积分10
11秒前
11秒前
Owen应助hugo采纳,获得10
20秒前
科研通AI6应助临子采纳,获得10
21秒前
Yikao完成签到 ,获得积分10
23秒前
27秒前
31秒前
CodeCraft应助临子采纳,获得10
32秒前
44秒前
量子星尘发布了新的文献求助10
46秒前
49秒前
临子发布了新的文献求助10
54秒前
Saturday完成签到 ,获得积分10
54秒前
春和景明完成签到,获得积分20
55秒前
57秒前
57秒前
科研通AI6应助虚化采纳,获得100
1分钟前
找文献真的好难完成签到,获得积分10
1分钟前
春和景明发布了新的文献求助10
1分钟前
1分钟前
我是老大应助美丽的靖雁采纳,获得10
1分钟前
香蕉觅云应助endocrine采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
小白发布了新的文献求助10
1分钟前
1分钟前
小二郎应助唠叨的秋蝶采纳,获得10
1分钟前
1分钟前
1分钟前
马克叔叔发布了新的文献求助10
1分钟前
初初见你完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432233
求助须知:如何正确求助?哪些是违规求助? 4544929
关于积分的说明 14194781
捐赠科研通 4464245
什么是DOI,文献DOI怎么找? 2447012
邀请新用户注册赠送积分活动 1438313
关于科研通互助平台的介绍 1415151