A Hyperspectral Image Classification Method Based on Multi-Discriminator Generative Adversarial Networks

鉴别器 高光谱成像 生成对抗网络 计算机科学 人工智能 模式识别(心理学) 生成语法 图像(数学) 深度学习 噪音(视频) 机器学习 电信 探测器
作者
Hongmin Gao,Dan Yao,Mingxia Wang,Chenming Li,Haiyun Liu,Hua Zhang,Jiawei Wang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:19 (15): 3269-3269 被引量:21
标识
DOI:10.3390/s19153269
摘要

Hyperspectral remote sensing images (HSIs) have great research and application value. At present, deep learning has become an important method for studying image processing. The Generative Adversarial Network (GAN) model is a typical network of deep learning developed in recent years and the GAN model can also be used to classify HSIs. However, there are still some problems in the classification of HSIs. On the one hand, due to the existence of different objects with the same spectrum phenomenon, if only according to the original GAN model to generate samples from spectral samples, it will produce the wrong detailed characteristic information. On the other hand, the gradient disappears in the original GAN model and the scoring ability of a single discriminator limits the quality of the generated samples. In order to solve the above problems, we introduce the scoring mechanism of multi-discriminator collaboration and complete semi-supervised classification on three hyperspectral data sets. Compared with the original GAN model with a single discriminator, the adjusted criterion is more rigorous and accurate and the generated samples can show more accurate characteristics. Aiming at the pattern collapse and diversity deficiency of the original GAN generated by single discriminator, this paper proposes a multi-discriminator generative adversarial networks (MDGANs) and studies the influence of the number of discriminators on the classification results. The experimental results show that the introduction of multi-discriminator improves the judgment ability of the model, ensures the effect of generating samples, solves the problem of noise in generating spectral samples and can improve the classification effect of HSIs. At the same time, the number of discriminators has different effects on different data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责吃饭完成签到,获得积分10
1秒前
ganjqly应助毛毛球采纳,获得20
3秒前
罐罐儿完成签到,获得积分0
3秒前
王哈哈完成签到,获得积分10
3秒前
teborlee完成签到,获得积分10
7秒前
liangmh完成签到,获得积分10
7秒前
孙淑婷完成签到,获得积分20
7秒前
MY完成签到,获得积分20
7秒前
Xiaoyan完成签到,获得积分10
8秒前
方圆学术完成签到,获得积分10
10秒前
11秒前
Coral完成签到,获得积分10
14秒前
毛毛球完成签到,获得积分10
14秒前
汤圆完成签到,获得积分10
15秒前
王博士完成签到,获得积分10
15秒前
橘寄完成签到,获得积分10
15秒前
CDI和LIB完成签到,获得积分10
16秒前
like发布了新的文献求助10
17秒前
冷傲的帽子完成签到 ,获得积分10
20秒前
24秒前
内向南风完成签到 ,获得积分10
25秒前
华仔应助like采纳,获得10
29秒前
29秒前
29秒前
29秒前
soss完成签到,获得积分10
30秒前
32秒前
打打应助HXX采纳,获得30
34秒前
DrLuffy完成签到,获得积分10
34秒前
欢喜蛋挞发布了新的文献求助10
34秒前
34秒前
小杨完成签到,获得积分10
35秒前
彩色半烟完成签到,获得积分10
35秒前
土木研学僧完成签到,获得积分10
37秒前
SYLH应助负责吃饭采纳,获得20
37秒前
淡然的奎完成签到,获得积分10
38秒前
果粒橙完成签到 ,获得积分10
41秒前
丘比特应助似锦繁花采纳,获得10
41秒前
迷路的平萱完成签到,获得积分10
43秒前
灰太狼大王完成签到 ,获得积分10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965787
求助须知:如何正确求助?哪些是违规求助? 3511088
关于积分的说明 11156314
捐赠科研通 3245709
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268