亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hyperspectral Image Classification Method Based on Multi-Discriminator Generative Adversarial Networks

鉴别器 高光谱成像 生成对抗网络 计算机科学 人工智能 模式识别(心理学) 生成语法 图像(数学) 深度学习 噪音(视频) 机器学习 电信 探测器
作者
Hongmin Gao,Dan Yao,Mingxia Wang,Chenming Li,Haiyun Liu,Hua Zhang,Jiawei Wang
出处
期刊:Sensors [MDPI AG]
卷期号:19 (15): 3269-3269 被引量:21
标识
DOI:10.3390/s19153269
摘要

Hyperspectral remote sensing images (HSIs) have great research and application value. At present, deep learning has become an important method for studying image processing. The Generative Adversarial Network (GAN) model is a typical network of deep learning developed in recent years and the GAN model can also be used to classify HSIs. However, there are still some problems in the classification of HSIs. On the one hand, due to the existence of different objects with the same spectrum phenomenon, if only according to the original GAN model to generate samples from spectral samples, it will produce the wrong detailed characteristic information. On the other hand, the gradient disappears in the original GAN model and the scoring ability of a single discriminator limits the quality of the generated samples. In order to solve the above problems, we introduce the scoring mechanism of multi-discriminator collaboration and complete semi-supervised classification on three hyperspectral data sets. Compared with the original GAN model with a single discriminator, the adjusted criterion is more rigorous and accurate and the generated samples can show more accurate characteristics. Aiming at the pattern collapse and diversity deficiency of the original GAN generated by single discriminator, this paper proposes a multi-discriminator generative adversarial networks (MDGANs) and studies the influence of the number of discriminators on the classification results. The experimental results show that the introduction of multi-discriminator improves the judgment ability of the model, ensures the effect of generating samples, solves the problem of noise in generating spectral samples and can improve the classification effect of HSIs. At the same time, the number of discriminators has different effects on different data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
科研通AI2S应助Vivalavida采纳,获得10
9秒前
18秒前
松子发布了新的文献求助20
19秒前
23秒前
Rn完成签到 ,获得积分10
29秒前
佛系研究僧完成签到,获得积分10
40秒前
科研通AI2S应助松子采纳,获得10
48秒前
53秒前
汉堡包应助lalalatiancai采纳,获得10
1分钟前
远山笑你完成签到 ,获得积分10
1分钟前
1分钟前
lalalatiancai发布了新的文献求助10
1分钟前
跳跃的谷雪完成签到 ,获得积分10
1分钟前
CipherSage应助lbjcp3采纳,获得10
1分钟前
孝顺的幻梅完成签到 ,获得积分10
1分钟前
花花完成签到 ,获得积分10
1分钟前
2分钟前
lbjcp3发布了新的文献求助10
2分钟前
paperwork应助爱听歌笑寒采纳,获得10
2分钟前
2分钟前
Lucas应助阿尼亚采纳,获得10
2分钟前
如沐春风发布了新的文献求助10
2分钟前
HNNUYanY发布了新的文献求助10
2分钟前
2分钟前
HNNUYanY完成签到,获得积分10
3分钟前
3分钟前
凡人丿完成签到,获得积分10
3分钟前
SciGPT应助Aaaaaa瘾采纳,获得10
3分钟前
3分钟前
3分钟前
雪白智宸完成签到 ,获得积分10
3分钟前
思源应助lbjcp3采纳,获得10
3分钟前
吕半鬼完成签到,获得积分10
3分钟前
故意的问安完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
lbjcp3发布了新的文献求助10
4分钟前
壮观的抽屉完成签到,获得积分10
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795255
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146