A Hyperspectral Image Classification Method Based on Multi-Discriminator Generative Adversarial Networks

鉴别器 高光谱成像 生成对抗网络 计算机科学 人工智能 模式识别(心理学) 生成语法 图像(数学) 深度学习 噪音(视频) 机器学习 电信 探测器
作者
Hongmin Gao,Dan Yao,Mingxia Wang,Chenming Li,Haiyun Liu,Hua Zhang,Jiawei Wang
出处
期刊:Sensors [MDPI AG]
卷期号:19 (15): 3269-3269 被引量:21
标识
DOI:10.3390/s19153269
摘要

Hyperspectral remote sensing images (HSIs) have great research and application value. At present, deep learning has become an important method for studying image processing. The Generative Adversarial Network (GAN) model is a typical network of deep learning developed in recent years and the GAN model can also be used to classify HSIs. However, there are still some problems in the classification of HSIs. On the one hand, due to the existence of different objects with the same spectrum phenomenon, if only according to the original GAN model to generate samples from spectral samples, it will produce the wrong detailed characteristic information. On the other hand, the gradient disappears in the original GAN model and the scoring ability of a single discriminator limits the quality of the generated samples. In order to solve the above problems, we introduce the scoring mechanism of multi-discriminator collaboration and complete semi-supervised classification on three hyperspectral data sets. Compared with the original GAN model with a single discriminator, the adjusted criterion is more rigorous and accurate and the generated samples can show more accurate characteristics. Aiming at the pattern collapse and diversity deficiency of the original GAN generated by single discriminator, this paper proposes a multi-discriminator generative adversarial networks (MDGANs) and studies the influence of the number of discriminators on the classification results. The experimental results show that the introduction of multi-discriminator improves the judgment ability of the model, ensures the effect of generating samples, solves the problem of noise in generating spectral samples and can improve the classification effect of HSIs. At the same time, the number of discriminators has different effects on different data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
rstorz完成签到,获得积分10
1秒前
wzxxxx发布了新的文献求助10
2秒前
方方方方神完成签到,获得积分20
2秒前
WiLDPiG433完成签到,获得积分10
2秒前
3秒前
Jasper应助椰子采纳,获得10
3秒前
Stormi发布了新的文献求助10
3秒前
jym发布了新的文献求助10
3秒前
3秒前
Maigret完成签到,获得积分10
4秒前
两飞飞完成签到,获得积分10
4秒前
4秒前
韭菜盒子发布了新的文献求助10
5秒前
ximu完成签到,获得积分20
5秒前
CLN完成签到,获得积分10
5秒前
SciGPT应助单薄凌蝶采纳,获得50
6秒前
6秒前
111完成签到,获得积分10
6秒前
小马甲应助117采纳,获得10
6秒前
甜甜的猫咪完成签到,获得积分10
6秒前
6秒前
66应助马佳凯采纳,获得10
6秒前
7秒前
是述不是沭完成签到,获得积分10
7秒前
8秒前
lei完成签到,获得积分10
8秒前
瘦瘦的背包完成签到,获得积分10
9秒前
9秒前
赘婿应助Elaine采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
科研小白完成签到,获得积分10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
思源应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得50
10秒前
CodeCraft应助科研通管家采纳,获得30
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740