A Hyperspectral Image Classification Method Based on Multi-Discriminator Generative Adversarial Networks

鉴别器 高光谱成像 生成对抗网络 计算机科学 人工智能 模式识别(心理学) 生成语法 图像(数学) 深度学习 噪音(视频) 机器学习 电信 探测器
作者
Hongmin Gao,Dan Yao,Mingxia Wang,Chenming Li,Haiyun Liu,Hua Zhang,Jiawei Wang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:19 (15): 3269-3269 被引量:21
标识
DOI:10.3390/s19153269
摘要

Hyperspectral remote sensing images (HSIs) have great research and application value. At present, deep learning has become an important method for studying image processing. The Generative Adversarial Network (GAN) model is a typical network of deep learning developed in recent years and the GAN model can also be used to classify HSIs. However, there are still some problems in the classification of HSIs. On the one hand, due to the existence of different objects with the same spectrum phenomenon, if only according to the original GAN model to generate samples from spectral samples, it will produce the wrong detailed characteristic information. On the other hand, the gradient disappears in the original GAN model and the scoring ability of a single discriminator limits the quality of the generated samples. In order to solve the above problems, we introduce the scoring mechanism of multi-discriminator collaboration and complete semi-supervised classification on three hyperspectral data sets. Compared with the original GAN model with a single discriminator, the adjusted criterion is more rigorous and accurate and the generated samples can show more accurate characteristics. Aiming at the pattern collapse and diversity deficiency of the original GAN generated by single discriminator, this paper proposes a multi-discriminator generative adversarial networks (MDGANs) and studies the influence of the number of discriminators on the classification results. The experimental results show that the introduction of multi-discriminator improves the judgment ability of the model, ensures the effect of generating samples, solves the problem of noise in generating spectral samples and can improve the classification effect of HSIs. At the same time, the number of discriminators has different effects on different data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
pyc076完成签到,获得积分10
2秒前
2秒前
2秒前
zm完成签到,获得积分10
3秒前
林业光魔发布了新的文献求助10
3秒前
3秒前
武雨寒发布了新的文献求助10
4秒前
4秒前
4秒前
nifty发布了新的文献求助10
5秒前
岳岳岳发布了新的文献求助10
6秒前
张zhang发布了新的文献求助10
6秒前
song发布了新的文献求助10
6秒前
8秒前
Yanwenjun发布了新的文献求助10
9秒前
安南应助林风眠采纳,获得10
9秒前
lixiang发布了新的文献求助30
10秒前
大模型应助淡淡依霜采纳,获得10
10秒前
科研通AI2S应助康达采纳,获得10
10秒前
坦率的云朵完成签到,获得积分10
10秒前
Chiwen完成签到,获得积分10
11秒前
香蕉觅云应助dididi采纳,获得10
11秒前
11秒前
12秒前
12秒前
思源应助奖品肉麻膏耶采纳,获得10
13秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
温柔的老头完成签到,获得积分10
15秒前
15秒前
Xenia发布了新的文献求助10
16秒前
慕青应助乐乐乐乐乐采纳,获得10
16秒前
可爱的函函应助量子星尘采纳,获得20
16秒前
17秒前
XUAN发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933582
求助须知:如何正确求助?哪些是违规求助? 4201685
关于积分的说明 13054603
捐赠科研通 3975759
什么是DOI,文献DOI怎么找? 2178584
邀请新用户注册赠送积分活动 1194854
关于科研通互助平台的介绍 1106269