On the use of deep learning for computational imaging

计算机科学 机器学习 领域(数学) 人工智能 深度学习 过程(计算) 口译(哲学) 影像学 数学 操作系统 程序设计语言 纯数学
作者
George Barbastathis,Aydogan Özcan,Guohai Situ
出处
期刊:Optica [Optica Publishing Group]
卷期号:6 (8): 921-921 被引量:640
标识
DOI:10.1364/optica.6.000921
摘要

Since their inception in the 1930-1960s, the research disciplines of computational imaging and machine learning have followed parallel tracks and, during the last two decades, experienced explosive growth drawing on similar progress in mathematical optimization and computing hardware.While these developments have always been to the benefit of image interpretation and machine vision, only recently has it become evident that machine learning architectures, and deep neural networks in particular, can be effective for computational image formation, aside from interpretation.The deep learning approach has proven to be especially attractive when the measurement is noisy and the measurement operator ill posed or uncertain.Examples reviewed here are: super-resolution; lensless retrieval of phase and complex amplitude from intensity; photon-limited scenes, including ghost imaging; and imaging through scatter.In this paper, we cast these works in a common framework.We relate the deep-learning-inspired solutions to the original computational imaging formulation and use the relationship to derive design insights, principles, and caveats of more general applicability.We also explore how the machine learning process is aided by the physics of imaging when ill posedness and uncertainties become particularly severe.It is hoped that the present unifying exposition will stimulate further progress in this promising field of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玫瑰遇上奶油完成签到 ,获得积分10
刚刚
芽芽完成签到,获得积分10
1秒前
研友_nPPERn完成签到,获得积分10
1秒前
不安愚志完成签到 ,获得积分10
1秒前
lovesonic完成签到,获得积分10
1秒前
8989完成签到,获得积分10
1秒前
饕餮肉丝发布了新的文献求助10
2秒前
NexusExplorer应助bjx采纳,获得10
2秒前
酷波er应助Maisie采纳,获得10
2秒前
wheat完成签到,获得积分10
2秒前
曾泳钧完成签到,获得积分10
3秒前
cmcm完成签到,获得积分10
3秒前
彭于晏应助夜城如梦醉采纳,获得10
3秒前
3秒前
3秒前
凯凯完成签到 ,获得积分10
3秒前
lilili完成签到,获得积分10
4秒前
人沐发布了新的文献求助10
4秒前
5秒前
酒巷完成签到,获得积分10
5秒前
MZ完成签到,获得积分10
5秒前
5秒前
5秒前
Yurrrrt完成签到,获得积分10
6秒前
搞对完成签到 ,获得积分10
6秒前
上官若男应助自然水风采纳,获得30
6秒前
kbj完成签到,获得积分10
7秒前
华仔应助cjypdf采纳,获得10
7秒前
7秒前
泛柏舟发布了新的文献求助10
7秒前
ExtroGod完成签到,获得积分10
7秒前
疯子不会学应助ccalvintan采纳,获得10
7秒前
zhaosh完成签到,获得积分10
8秒前
8秒前
美文完成签到,获得积分10
8秒前
吃饭了没完成签到,获得积分10
8秒前
111完成签到,获得积分10
8秒前
芝诺完成签到 ,获得积分10
8秒前
今后应助激动的月亮采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614030
求助须知:如何正确求助?哪些是违规求助? 4018429
关于积分的说明 12438324
捐赠科研通 3701118
什么是DOI,文献DOI怎么找? 2041105
邀请新用户注册赠送积分活动 1073803
科研通“疑难数据库(出版商)”最低求助积分说明 957479