On the use of deep learning for computational imaging

计算机科学 机器学习 领域(数学) 人工智能 深度学习 过程(计算) 口译(哲学) 影像学 数学 操作系统 程序设计语言 纯数学
作者
George Barbastathis,Aydogan Özcan,Guohai Situ
出处
期刊:Optica [The Optical Society]
卷期号:6 (8): 921-921 被引量:640
标识
DOI:10.1364/optica.6.000921
摘要

Since their inception in the 1930-1960s, the research disciplines of computational imaging and machine learning have followed parallel tracks and, during the last two decades, experienced explosive growth drawing on similar progress in mathematical optimization and computing hardware.While these developments have always been to the benefit of image interpretation and machine vision, only recently has it become evident that machine learning architectures, and deep neural networks in particular, can be effective for computational image formation, aside from interpretation.The deep learning approach has proven to be especially attractive when the measurement is noisy and the measurement operator ill posed or uncertain.Examples reviewed here are: super-resolution; lensless retrieval of phase and complex amplitude from intensity; photon-limited scenes, including ghost imaging; and imaging through scatter.In this paper, we cast these works in a common framework.We relate the deep-learning-inspired solutions to the original computational imaging formulation and use the relationship to derive design insights, principles, and caveats of more general applicability.We also explore how the machine learning process is aided by the physics of imaging when ill posedness and uncertainties become particularly severe.It is hoped that the present unifying exposition will stimulate further progress in this promising field of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然亦云完成签到 ,获得积分20
刚刚
1秒前
2秒前
卡卡光波完成签到,获得积分10
4秒前
5秒前
落后谷兰发布了新的文献求助10
6秒前
西一阿铭发布了新的文献求助10
6秒前
6秒前
dyuephy发布了新的文献求助10
7秒前
dmq发布了新的文献求助10
10秒前
11秒前
万安安发布了新的文献求助10
11秒前
思源应助落后谷兰采纳,获得10
11秒前
13秒前
14秒前
14秒前
14秒前
无花果应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
WB87应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
无奈听双完成签到 ,获得积分10
16秒前
16秒前
16秒前
Orange应助缪伟采纳,获得10
16秒前
lina发布了新的文献求助10
18秒前
SCH_zhu完成签到,获得积分0
19秒前
Eliauk完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
23秒前
我是老大应助万安安采纳,获得10
25秒前
25秒前
27秒前
27秒前
29秒前
科研通AI2S应助lina采纳,获得10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431792
求助须知:如何正确求助?哪些是违规求助? 4544653
关于积分的说明 14193386
捐赠科研通 4463776
什么是DOI,文献DOI怎么找? 2446873
邀请新用户注册赠送积分活动 1438218
关于科研通互助平台的介绍 1414921