On the use of deep learning for computational imaging

计算机科学 机器学习 领域(数学) 人工智能 深度学习 过程(计算) 口译(哲学) 影像学 数学 操作系统 程序设计语言 纯数学
作者
George Barbastathis,Aydogan Özcan,Guohai Situ
出处
期刊:Optica [The Optical Society]
卷期号:6 (8): 921-921 被引量:640
标识
DOI:10.1364/optica.6.000921
摘要

Since their inception in the 1930-1960s, the research disciplines of computational imaging and machine learning have followed parallel tracks and, during the last two decades, experienced explosive growth drawing on similar progress in mathematical optimization and computing hardware.While these developments have always been to the benefit of image interpretation and machine vision, only recently has it become evident that machine learning architectures, and deep neural networks in particular, can be effective for computational image formation, aside from interpretation.The deep learning approach has proven to be especially attractive when the measurement is noisy and the measurement operator ill posed or uncertain.Examples reviewed here are: super-resolution; lensless retrieval of phase and complex amplitude from intensity; photon-limited scenes, including ghost imaging; and imaging through scatter.In this paper, we cast these works in a common framework.We relate the deep-learning-inspired solutions to the original computational imaging formulation and use the relationship to derive design insights, principles, and caveats of more general applicability.We also explore how the machine learning process is aided by the physics of imaging when ill posedness and uncertainties become particularly severe.It is hoped that the present unifying exposition will stimulate further progress in this promising field of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助GXY采纳,获得30
刚刚
香蕉不言发布了新的文献求助10
刚刚
迅速海云发布了新的文献求助10
1秒前
xiamovivi完成签到,获得积分10
2秒前
bitahu完成签到,获得积分20
2秒前
路边一颗小草完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
乐乐应助勤劳落雁采纳,获得30
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
852应助独特亦旋采纳,获得10
4秒前
4秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
清秀灵薇完成签到,获得积分10
6秒前
超哥完成签到,获得积分10
6秒前
7秒前
bkagyin应助TT采纳,获得10
7秒前
一只科研pig完成签到 ,获得积分10
7秒前
oliver501发布了新的文献求助10
8秒前
11秒前
12秒前
科研路上的干饭桶完成签到,获得积分10
12秒前
所所应助YYJ25采纳,获得10
12秒前
传奇3应助ubiqutin采纳,获得10
13秒前
Wiggins完成签到,获得积分10
13秒前
adi完成签到,获得积分10
13秒前
小马甲应助猫了个喵采纳,获得10
13秒前
浮浮世世给浮浮世世的求助进行了留言
14秒前
海鸥海鸥发布了新的文献求助10
15秒前
田様应助稀罕你采纳,获得10
16秒前
汤浩宏发布了新的文献求助10
17秒前
天天完成签到 ,获得积分10
17秒前
ray发布了新的文献求助10
17秒前
Hello应助wang采纳,获得10
18秒前
qq完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849