Path Planning for Multi-UAV Formation Rendezvous Based on Distributed Cooperative Particle Swarm Optimization

会合 粒子群优化 数学优化 运动规划 计算机科学 路径(计算) 运动学 曲率 控制理论(社会学) 群体行为 数学 工程类 机器人 航空航天工程 人工智能 控制(管理) 物理 几何学 程序设计语言 经典力学 航天器
作者
Zhuang Shao,Fei Yan,Zhou Zhou,Xiaoping Zhu
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:9 (13): 2621-2621 被引量:38
标识
DOI:10.3390/app9132621
摘要

This paper studies the problem of generating cooperative feasible paths for formation rendezvous of unmanned aerial vehicles (UAVs). Cooperative path-planning for multi-UAV formation rendezvous is mostly a complicated multi-objective optimization problem with many coupled constraints. In order to satisfy the kinematic constraints, i.e., the maximum curvature constraint and the requirement of continuous curvature of the UAV path, the Pythagorean hodograph (PH) curve is adopted as the parameterized path because of its curvature continuity and rational intrinsic properties. Inspired by the co-evolutionary theory, a distributed cooperative particle swarm optimization (DCPSO) algorithm with an elite keeping strategy is proposed to generate a flyable and safe path for each UAV. This proposed algorithm can meet the kinematic constraints of UAVs and the cooperation requirements among UAVs. Meanwhile, the optimal or sub-optimal paths can be obtained. Finally, numerical simulations in 2-D and 3-D environments are conducted to demonstrate the feasibility and stability of the proposed algorithm. Simulation results show that the paths generated by the proposed DCPSO can not only meet the kinematic constraints of UAVs and safety requirements, but also achieve the simultaneous arrival and collision avoidance between UAVs for formation rendezvous. Compared with the cooperative co-evolutionary genetic algorithm (CCGA), the proposed DCPSO has better stability and a higher searching success rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助123采纳,获得10
1秒前
1秒前
1秒前
小二郎应助Improve采纳,获得10
1秒前
斯文败类应助开朗代亦采纳,获得10
2秒前
无花果应助胡梦迪采纳,获得10
2秒前
aaa完成签到,获得积分10
3秒前
最优解完成签到 ,获得积分20
3秒前
圆锥香蕉给kevin的求助进行了留言
4秒前
ddd完成签到,获得积分20
4秒前
5秒前
hui完成签到,获得积分10
5秒前
自然妙旋完成签到,获得积分10
5秒前
贾qz发布了新的文献求助10
5秒前
fishss完成签到,获得积分10
6秒前
7秒前
7秒前
赘婿应助心仔采纳,获得10
7秒前
马六甲发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
10秒前
12秒前
马六甲完成签到,获得积分20
13秒前
Guozixin发布了新的文献求助10
13秒前
bkagyin应助一昂采纳,获得10
13秒前
13秒前
cat_head发布了新的文献求助10
14秒前
科目三应助LL采纳,获得10
14秒前
wg完成签到,获得积分10
14秒前
15秒前
15秒前
Running完成签到,获得积分10
15秒前
123完成签到,获得积分20
16秒前
16秒前
xjdb123发布了新的文献求助10
17秒前
junjun完成签到,获得积分10
17秒前
Yu发布了新的文献求助10
17秒前
武工队队长石青山完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123189
求助须知:如何正确求助?哪些是违规求助? 4327690
关于积分的说明 13485306
捐赠科研通 4161935
什么是DOI,文献DOI怎么找? 2281094
邀请新用户注册赠送积分活动 1282577
关于科研通互助平台的介绍 1221658