Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation

纳米晶 中子散射 材料科学 散射 小角中子散射 量子点 结构因子 化学物理 纳米技术 结晶学 物理 化学 光学
作者
Samuel W. Winslow,Wenbi Shcherbakov-Wu,Yun Liu,William A. Tisdale,James W. Swan
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:150 (24) 被引量:28
标识
DOI:10.1063/1.5108904
摘要

Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal surface. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging to formulate robustly. Here, using oleate-capped PbS quantum dots as a model system, we demonstrate the capability of small angle neutron scattering (SANS) in resolving core, ligand-shell, and solvent structure for well-dispersed nanocrystals using a single technique. SANS scattering data collected at eight separate solvent deuteration fractions were used to characterize the structure of the nanocrystals in reciprocal space. Molecular dynamics simulations were used to develop a coarse-grained form factor describing the scattering length density profile of ligand-stabilized nanocrystals in solution. We introduce an affine invariant Markov chain Monte Carlo method to efficiently perform nonlinear parameter estimation for the form factor describing such dilute solutions. This technique yields robust uncertainty estimates. This experimental design is broadly applicable across colloidal nanocrystal material systems including emergent perovskite nanocrystals, and the parameter estimation protocol significantly accelerates characterization and provides new insights into the atomic and molecular structure of colloidal nanomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助cc采纳,获得10
1秒前
KIKI完成签到 ,获得积分10
1秒前
研友_nPb9e8完成签到,获得积分10
1秒前
阿楠发布了新的文献求助10
2秒前
英俊的铭应助十一采纳,获得10
3秒前
英俊的铭应助鑫xin采纳,获得10
4秒前
ding应助xx采纳,获得10
5秒前
dan1029完成签到,获得积分10
6秒前
隐形曼青应助Zilch采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
小卿发布了新的文献求助10
8秒前
docter完成签到,获得积分10
11秒前
强健的糖豆完成签到,获得积分10
12秒前
12秒前
RAmos_1982完成签到,获得积分10
12秒前
几甜完成签到,获得积分10
12秒前
成就的梦曼完成签到,获得积分10
15秒前
16秒前
16秒前
十一发布了新的文献求助10
16秒前
传奇3应助111采纳,获得10
16秒前
17秒前
llll发布了新的文献求助100
17秒前
浮游应助几甜采纳,获得10
17秒前
18秒前
19秒前
一号小玩家完成签到,获得积分10
19秒前
打打应助明亮的lunacake采纳,获得10
19秒前
小雷发布了新的文献求助10
20秒前
20秒前
20秒前
xx完成签到,获得积分20
20秒前
20秒前
完美世界应助龙华之士采纳,获得10
21秒前
梦makjdh完成签到,获得积分10
21秒前
茶茶完成签到,获得积分10
21秒前
wangrch6完成签到,获得积分10
21秒前
包子完成签到,获得积分10
22秒前
花生发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480763
求助须知:如何正确求助?哪些是违规求助? 4581949
关于积分的说明 14382770
捐赠科研通 4510558
什么是DOI,文献DOI怎么找? 2471862
邀请新用户注册赠送积分活动 1458272
关于科研通互助平台的介绍 1431940