Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation

纳米晶 中子散射 材料科学 散射 小角中子散射 量子点 结构因子 化学物理 纳米技术 结晶学 物理 化学 光学
作者
Samuel W. Winslow,Wenbi Shcherbakov-Wu,Yun Liu,William A. Tisdale,James W. Swan
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:150 (24) 被引量:28
标识
DOI:10.1063/1.5108904
摘要

Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal surface. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging to formulate robustly. Here, using oleate-capped PbS quantum dots as a model system, we demonstrate the capability of small angle neutron scattering (SANS) in resolving core, ligand-shell, and solvent structure for well-dispersed nanocrystals using a single technique. SANS scattering data collected at eight separate solvent deuteration fractions were used to characterize the structure of the nanocrystals in reciprocal space. Molecular dynamics simulations were used to develop a coarse-grained form factor describing the scattering length density profile of ligand-stabilized nanocrystals in solution. We introduce an affine invariant Markov chain Monte Carlo method to efficiently perform nonlinear parameter estimation for the form factor describing such dilute solutions. This technique yields robust uncertainty estimates. This experimental design is broadly applicable across colloidal nanocrystal material systems including emergent perovskite nanocrystals, and the parameter estimation protocol significantly accelerates characterization and provides new insights into the atomic and molecular structure of colloidal nanomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卧镁铀钳完成签到 ,获得积分10
1秒前
DHL完成签到,获得积分10
2秒前
TT发布了新的文献求助10
2秒前
小蘑菇应助科研通管家采纳,获得30
3秒前
terence应助科研通管家采纳,获得30
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Akim应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
4秒前
害怕的小玉完成签到,获得积分10
4秒前
5秒前
8秒前
梦里花落知多少完成签到,获得积分10
8秒前
9秒前
阳阳发布了新的文献求助10
9秒前
Poyd发布了新的文献求助10
11秒前
开开完成签到,获得积分10
11秒前
tao_blue发布了新的文献求助10
12秒前
12秒前
888完成签到,获得积分10
12秒前
饭神仙鱼完成签到,获得积分10
13秒前
KBYer发布了新的文献求助20
13秒前
Jzhang应助tmpstlml采纳,获得10
14秒前
YoYo发布了新的文献求助10
14秒前
豌豆发布了新的文献求助10
16秒前
17秒前
言叶完成签到,获得积分10
17秒前
18秒前
CipherSage应助清新的冷松采纳,获得10
18秒前
JamesPei应助Poyd采纳,获得10
19秒前
科目三应助药学牛马采纳,获得10
20秒前
lixm发布了新的文献求助10
21秒前
NAA完成签到,获得积分10
22秒前
22秒前
tao_blue完成签到,获得积分10
22秒前
荔枝完成签到,获得积分20
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849