光电流
接受者
能量转换效率
聚合物太阳能电池
材料科学
聚合物
有机太阳能电池
太阳能电池
化学工程
罗丹宁
光电子学
化学
有机化学
复合材料
物理
工程类
凝聚态物理
作者
Jafar I. Khan,Raja Shahid Ashraf,Maha A. Alamoudi,Mohammed N. Nabi,Hamza N. Mohammed,Andrew Wadsworth,Yuliar Firdaus,Weimin Zhang,Thomas D. Anthopoulos,Iain McCulloch,Frédéric Laquai
出处
期刊:Solar RRL
[Wiley]
日期:2019-04-29
卷期号:3 (8)
被引量:31
标识
DOI:10.1002/solr.201900023
摘要
Large‐scale production of organic solar modules requires low‐cost and reliable materials with reproducible batch‐to‐batch properties. In case of polymers, their (photo)physical properties depend strongly on the polymers’ molecular weight (MW). Herein, the impact of the MW of the donor polymer poly(3‐hexylthiophene) (P3HT) on the photophysics is studied in blends with a recently developed rhodanine‐endcapped indacenodithiophene nonfullerene acceptor (IDTBR), a bulk heterojunction (BHJ) system that potentially fulfills the aforementioned criteria for large‐scale production. It is found that the power conversion efficiency (PCE) increases when the weight‐average MW is increased from 17 kDa (PCE: 4.0%) to 34 kDa (PCE: 6.6%), whereas a further increase in MW leads to a reduced PCE of 4.4%. It is demonstrated that the charge generation efficiency, as estimated from time‐delayed collection field experiments, varies with the P3HT MW and is the reason for the differences in photocurrent and device performance. These findings provide insight into the fundamental photophysical reasons of the MW dependence of the PCE, which is taken into account when using polymer‐based nonfullerene acceptor blends in solar cell devices and modules.
科研通智能强力驱动
Strongly Powered by AbleSci AI