Predicting dielectric constants of pure liquids: fragment-based Kirkwood–Fröhlich model applicable over a wide range of polarity

电介质 极地的 航程(航空) 偶极子 Python(编程语言) 加法函数 热力学 摩尔体积 化学极性 计算化学 统计物理学 化学 材料科学 物理 计算机科学 有机化学 数学分析 量子力学 数学 操作系统 复合材料
作者
Rémi Bouteloup,Didier Mathieu
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:21 (21): 11043-11057 被引量:11
标识
DOI:10.1039/c9cp01704f
摘要

In view of developing a procedure to predict the dielectric constant (εr) of pure liquids from molecular structure, a thorough analysis of prominent factors affecting this property is carried out. The results suggest that the orientational dipolar parameter gμ2 involved in the Kirkwood-Fröhlich theory may be estimated as a sum of additive contributions (gμ2)i associated with suitably defined polar fragments i. Associated with third-party models for the molar volume Vm and the refractive index nD, this provides a practical route to predicting εr for new compounds. Advantages over previous methods include: simplicity, as the present model relies on fragment-additivity and does not require 3D structures; sound physical bases; demonstrated applicability to polar liquids with εr values up to 200; predictive ability extensively demonstrated against large datasets (for a total of 1220 compounds) covering a broad structural diversity, resulting in values of the root mean square deviation/average percent error as low as 3.7/10% for data sets focused on simple organic compounds as considered in previous studies, although the inclusion of many alcohols in the data set leads to poorer statistics (5.0/32%) due to the lack of specific parameters for hydroxyl groups in distinct environments. The approach should be of special interest in the current search for new aprotic electrolytes aimed at improving the performances of electrochemical energy storage systems. Although its reliance on many fitting parameters restricts its domain of applicability, the present implementation is recommended over current procedures whenever possible. A Python script is provided to allow its straightforward application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉背包完成签到 ,获得积分10
3秒前
益生益生完成签到 ,获得积分10
4秒前
小猴儿发布了新的文献求助10
4秒前
wyh发布了新的文献求助10
4秒前
5秒前
彭于晏应助武雨寒采纳,获得10
6秒前
徐伟康完成签到 ,获得积分10
7秒前
独特的夜阑完成签到 ,获得积分10
7秒前
8秒前
古月发布了新的文献求助10
9秒前
10秒前
情怀应助如意的听云采纳,获得10
10秒前
12秒前
无花果应助念姬采纳,获得10
12秒前
趣多多发布了新的文献求助10
13秒前
David发布了新的文献求助10
14秒前
姜风柏华完成签到,获得积分10
14秒前
16秒前
xhh完成签到 ,获得积分10
16秒前
舒服的微笑完成签到,获得积分10
17秒前
21秒前
李爱国应助LLL采纳,获得10
23秒前
lumia发布了新的文献求助10
23秒前
奶牛在吃豆完成签到,获得积分10
25秒前
orixero应助香蕉吃鱼采纳,获得10
25秒前
钟于发布了新的文献求助10
26秒前
地表飞猪应助眉间尺采纳,获得10
26秒前
26秒前
wyh完成签到,获得积分10
27秒前
27秒前
29秒前
29秒前
派大星发布了新的文献求助10
30秒前
烟花应助lumia采纳,获得10
31秒前
32秒前
含蓄元冬发布了新的文献求助10
32秒前
小马甲应助LLL采纳,获得10
33秒前
李健应助钟于采纳,获得10
34秒前
袁大头发布了新的文献求助10
35秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432