Tri-Goal Evolution Framework for Constrained Many-Objective Optimization

趋同(经济学) 计算机科学 数学优化 排名(信息检索) 约束优化 最优化问题 多目标优化 进化算法 数学 人工智能 经济增长 经济
作者
Yue Zhou,Min Zhu,Jiahai Wang,Zizhen Zhang,Yi Xiang,Jun Zhang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:25
标识
DOI:10.1109/tsmc.2018.2858843
摘要

It is generally accepted that the essential goal of many-objective optimization is the balance between convergence and diversity. For constrained many-objective optimization problems (CMaOPs), the feasibility of solutions should be considered as well. Then the real challenge of constrained many-objective optimization can be generalized to the balance among convergence, diversity, and feasibility. In this paper, a tri-goal evolution framework is proposed for CMaOPs. The proposed framework carefully designs two indicators for convergence and diversity, respectively, and converts the constraints into the third indicator for feasibility. Since the essential goal of constrained many-objective optimization is to balance convergence, diversity, and feasibility, the philosophy of the proposed framework matches the essential goal of constrained many-objective optimization well. Thus, it is natural to use the proposed framework to deal with CMaOPs. Further, the proposed framework is conceptually simple and easy to instantiate for constrained many-objective optimization. A variety of balance schemes and ranking methods can be used to achieve the balance among convergence, diversity and feasibility. Three typical instantiations of the proposed framework are then designed. Experimental results on a constrained many-objective optimization test suite show that the proposed framework is highly competitive with existing state-of-the-art constrained many-objective evolutionary algorithms for CMaOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Chang完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
半夜不睡发布了新的文献求助10
2秒前
ugh完成签到,获得积分10
2秒前
2秒前
chshpy发布了新的文献求助10
3秒前
4秒前
刘步遥完成签到 ,获得积分10
4秒前
乐乐应助Alibizia采纳,获得10
4秒前
隐形曼青应助fbbggb采纳,获得10
5秒前
lilei发布了新的文献求助10
5秒前
啾比文发布了新的文献求助10
6秒前
7秒前
欣喜的伟泽完成签到,获得积分10
7秒前
99完成签到,获得积分10
8秒前
9秒前
研友_VZG7GZ应助隐形的念芹采纳,获得10
9秒前
9秒前
Bob完成签到,获得积分10
9秒前
10秒前
搜集达人应助穿山甲采纳,获得10
10秒前
10秒前
好吃发布了新的文献求助10
10秒前
13完成签到,获得积分10
10秒前
包包琪发布了新的文献求助30
11秒前
小龙人完成签到,获得积分20
11秒前
11秒前
风趣飞柏发布了新的文献求助10
11秒前
12秒前
12秒前
夏沫完成签到,获得积分10
12秒前
努努发布了新的文献求助10
12秒前
12秒前
威武鸽子完成签到,获得积分10
13秒前
可爱的函函应助啾比文采纳,获得10
13秒前
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979196
求助须知:如何正确求助?哪些是违规求助? 3523110
关于积分的说明 11216298
捐赠科研通 3260559
什么是DOI,文献DOI怎么找? 1800098
邀请新用户注册赠送积分活动 878823
科研通“疑难数据库(出版商)”最低求助积分说明 807092