Hyperspectral Image Unmixing With Endmember Bundles and Group Sparsity Inducing Mixed Norms

端元 高光谱成像 像素 模式识别(心理学) 丰度估计 人工智能 约束(计算机辅助设计) 计算机科学 图像分辨率 数学 丰度(生态学) 几何学 生物 渔业
作者
Lucas Drumetz,Travis R. Meyer,Jocelyn Chanussot,Andrea L. Bertozzi,Christian Jutten
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 3435-3450 被引量:84
标识
DOI:10.1109/tip.2019.2897254
摘要

Hyperspectral images provide much more information than conventional imaging techniques, allowing a precise identification of the materials in the observed scene, but because of the limited spatial resolution, the observations are usually mixtures of the contributions of several materials. The spectral unmixing problem aims at recovering the spectra of the pure materials of the scene (endmembers), along with their proportions (abundances) in each pixel. In order to deal with the intra-class variability of the materials and the induced spectral variability of the endmembers, several spectra per material, constituting endmember bundles, can be considered. However, the usual abundance estimation techniques do not take advantage of the particular structure of these bundles, organized into groups of spectra. In this paper, we propose to use group sparsity by introducing mixed norms in the abundance estimation optimization problem. In particular, we propose a new penalty which simultaneously enforces group and within group sparsity, to the cost of being nonconvex. All the proposed penalties are compatible with the abundance sum-to-one constraint, which is not the case with traditional sparse regression. We show on simulated and real datasets that well chosen penalties can significantly improve the unmixing performance compared to the naive bundle approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的大碗应助明理念桃采纳,获得20
刚刚
1秒前
meng完成签到,获得积分10
1秒前
学者完成签到,获得积分10
1秒前
英俊的铭应助愉快盼曼采纳,获得10
2秒前
2秒前
小媛完成签到 ,获得积分10
3秒前
学术小白完成签到,获得积分20
3秒前
赘婿应助xiaomeng采纳,获得10
3秒前
Khr1stINK发布了新的文献求助10
3秒前
清新的苑博完成签到,获得积分10
3秒前
4秒前
果果瑞宁发布了新的文献求助10
5秒前
阿美发布了新的文献求助30
7秒前
7秒前
Jocelyn7完成签到,获得积分10
8秒前
wanyanjin应助yaoyao采纳,获得10
9秒前
Stephanie完成签到,获得积分20
9秒前
C_Cppp发布了新的文献求助10
9秒前
大抽是谁完成签到,获得积分10
9秒前
10秒前
Q0应助Hangerli采纳,获得20
10秒前
10秒前
黎土土发布了新的文献求助50
12秒前
12秒前
大抽是谁发布了新的文献求助10
13秒前
13秒前
李健的小迷弟应助公茂源采纳,获得30
13秒前
失眠的凝雁完成签到,获得积分10
13秒前
科研通AI5应助赖道之采纳,获得10
13秒前
Menand完成签到,获得积分10
14秒前
学者发布了新的文献求助10
14秒前
清新完成签到,获得积分10
14秒前
陶弈衡完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
愉快盼曼发布了新的文献求助10
19秒前
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808