作业车间调度
数学优化
计算机科学
进化算法
调度(生产过程)
能源消耗
分解
作业调度程序
操作员(生物学)
工程类
数学
嵌入式系统
电气工程
程序设计语言
化学
排队
抑制因子
基因
生物
转录因子
布线(电子设计自动化)
生物化学
生态学
标识
DOI:10.1109/ieem.2018.8607582
摘要
With the developing of green economy, energy-efficient scheduling has raised great interest recently. In our paper, we propose a modified multiobjective evolutionary algorithm based on decomposition (MMOEA/D) for the energy-efficient flexible job shop scheduling problem (EEFJSP) to optimize makespan and total energy consumption. A cooperative search operator is designed to improve the exploration. At the same time, a local intensification based on the properties of this problem is added to enhance the exploitation. Besides, the effect of parameter setting is investigated by the design-of experiment. Finally, comparison experiments are carried out between the MMOEA/D and the shuffled frog-leaping algorithm (SFLA). The results have shown that the MMOEA/D outperforms SFLA on this problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI