Deep-learning inversion: A next-generation seismic velocity model building method

卷积神经网络 深度学习 反演(地质) 地震记录 人工神经网络 地震层析成像 地震反演 地球物理成像 样板房 人工智能 计算机科学 地质学 算法 地震学 地球物理学 数据同化 构造学 地幔(地质学) 量子力学 物理 气象学
作者
Fangshu Yang,Jianwei Ma
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:84 (4): R583-R599 被引量:342
标识
DOI:10.1190/geo2018-0249.1
摘要

Seismic velocity is one of the most important parameters used in seismic exploration. Accurate velocity models are the key prerequisites for reverse time migration and other high-resolution seismic imaging techniques. Such velocity information has traditionally been derived by tomography or full-waveform inversion (FWI), which are time consuming and computationally expensive, and they rely heavily on human interaction and quality control. We have investigated a novel method based on the supervised deep fully convolutional neural network for velocity-model building directly from raw seismograms. Unlike the conventional inversion method based on physical models, supervised deep-learning methods are based on big-data training rather than prior-knowledge assumptions. During the training stage, the network establishes a nonlinear projection from the multishot seismic data to the corresponding velocity models. During the prediction stage, the trained network can be used to estimate the velocity models from the new input seismic data. One key characteristic of the deep-learning method is that it can automatically extract multilayer useful features without the need for human-curated activities and an initial velocity setup. The data-driven method usually requires more time during the training stage, and actual predictions take less time, with only seconds needed. Therefore, the computational time of geophysical inversions, including real-time inversions, can be dramatically reduced once a good generalized network is built. By using numerical experiments on synthetic models, the promising performance of our proposed method is shown in comparison with conventional FWI even when the input data are in more realistic scenarios. We have also evaluated deep-learning methods, the training data set, the lack of low frequencies, and the advantages and disadvantages of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lisa完成签到 ,获得积分10
刚刚
linhante完成签到 ,获得积分10
1秒前
1秒前
沉默的莞完成签到,获得积分10
2秒前
溪泉发布了新的文献求助10
2秒前
英俊亦巧完成签到,获得积分10
3秒前
柠一完成签到 ,获得积分10
4秒前
黑眼豆豆完成签到,获得积分10
4秒前
1111完成签到,获得积分10
4秒前
霸气的香芦完成签到,获得积分10
4秒前
快乐的幼丝完成签到 ,获得积分10
4秒前
哆啦小鱼完成签到,获得积分10
5秒前
独享发布了新的文献求助10
5秒前
粗心的菀完成签到 ,获得积分0
6秒前
DDD完成签到,获得积分10
8秒前
紫宸完成签到,获得积分10
9秒前
11完成签到,获得积分10
9秒前
石斑鱼完成签到,获得积分10
9秒前
浅浅完成签到,获得积分10
10秒前
vivi完成签到,获得积分10
10秒前
10秒前
李文思完成签到,获得积分10
11秒前
窝窝头完成签到,获得积分10
11秒前
ZBM完成签到,获得积分10
11秒前
拉普兰Z完成签到,获得积分10
12秒前
12321完成签到,获得积分10
12秒前
12秒前
陈老太完成签到 ,获得积分10
12秒前
科研达人完成签到,获得积分10
13秒前
orixero应助宝海青采纳,获得10
13秒前
王京华完成签到,获得积分10
14秒前
evvj完成签到,获得积分10
14秒前
豪杰完成签到,获得积分10
14秒前
ccc应助邓帆采纳,获得10
16秒前
迷你的雁枫完成签到 ,获得积分10
16秒前
16秒前
千面追风发布了新的文献求助10
17秒前
尊敬的小土豆完成签到,获得积分10
17秒前
骑驴追火箭完成签到,获得积分10
18秒前
缺粥发布了新的文献求助10
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471638
求助须知:如何正确求助?哪些是违规求助? 3064571
关于积分的说明 9088798
捐赠科研通 2755245
什么是DOI,文献DOI怎么找? 1511947
邀请新用户注册赠送积分活动 698611
科研通“疑难数据库(出版商)”最低求助积分说明 698491