Deep-learning inversion: A next-generation seismic velocity model building method

卷积神经网络 深度学习 反演(地质) 地震记录 人工神经网络 地震层析成像 地震反演 地球物理成像 样板房 人工智能 计算机科学 地质学 算法 地震学 地球物理学 数据同化 构造学 地幔(地质学) 量子力学 物理 气象学
作者
Fangshu Yang,Jianwei Ma
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:84 (4): R583-R599 被引量:443
标识
DOI:10.1190/geo2018-0249.1
摘要

Seismic velocity is one of the most important parameters used in seismic exploration. Accurate velocity models are the key prerequisites for reverse time migration and other high-resolution seismic imaging techniques. Such velocity information has traditionally been derived by tomography or full-waveform inversion (FWI), which are time consuming and computationally expensive, and they rely heavily on human interaction and quality control. We have investigated a novel method based on the supervised deep fully convolutional neural network for velocity-model building directly from raw seismograms. Unlike the conventional inversion method based on physical models, supervised deep-learning methods are based on big-data training rather than prior-knowledge assumptions. During the training stage, the network establishes a nonlinear projection from the multishot seismic data to the corresponding velocity models. During the prediction stage, the trained network can be used to estimate the velocity models from the new input seismic data. One key characteristic of the deep-learning method is that it can automatically extract multilayer useful features without the need for human-curated activities and an initial velocity setup. The data-driven method usually requires more time during the training stage, and actual predictions take less time, with only seconds needed. Therefore, the computational time of geophysical inversions, including real-time inversions, can be dramatically reduced once a good generalized network is built. By using numerical experiments on synthetic models, the promising performance of our proposed method is shown in comparison with conventional FWI even when the input data are in more realistic scenarios. We have also evaluated deep-learning methods, the training data set, the lack of low frequencies, and the advantages and disadvantages of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助malele采纳,获得10
1秒前
小马甲应助锅包肉采纳,获得10
1秒前
1秒前
静jj发布了新的文献求助10
2秒前
chuhuibaba完成签到,获得积分20
2秒前
千空完成签到,获得积分10
2秒前
3秒前
5123发布了新的文献求助10
3秒前
令狐晓博完成签到,获得积分0
3秒前
haki完成签到,获得积分10
4秒前
4秒前
重要问筠完成签到,获得积分10
4秒前
AronHUANG完成签到,获得积分10
4秒前
for_abSCI完成签到,获得积分10
5秒前
健壮的凝冬完成签到 ,获得积分10
5秒前
6秒前
香蕉觅云应助拌拌采纳,获得10
6秒前
Ding应助维时采纳,获得10
6秒前
千空发布了新的文献求助10
7秒前
怕孤单的若颜完成签到,获得积分10
7秒前
7秒前
8秒前
15297657686完成签到,获得积分10
8秒前
Max完成签到,获得积分10
9秒前
SherlockJia完成签到,获得积分10
9秒前
callmecjh完成签到,获得积分10
10秒前
5123完成签到,获得积分10
10秒前
阿良完成签到,获得积分10
10秒前
伍六七完成签到,获得积分10
11秒前
YOYOYO完成签到,获得积分10
11秒前
11秒前
彳亍完成签到,获得积分10
11秒前
MRIFFF完成签到,获得积分10
11秒前
Linda完成签到 ,获得积分10
12秒前
孙燕应助赵宇宙采纳,获得10
12秒前
小圆子完成签到,获得积分10
12秒前
12秒前
富强民主发布了新的文献求助20
12秒前
13秒前
burno1112完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044