Atomic Ni Anchored Covalent Triazine Framework as High Efficient Electrocatalyst for Carbon Dioxide Conversion

电催化剂 材料科学 共价键 法拉第效率 三嗪 卟啉 密度泛函理论 纳米技术 二氧化碳电化学还原 化学工程 光化学 催化作用 有机化学 电化学 高分子化学 物理化学 电极 计算化学 一氧化碳 化学 工程类
作者
Chenbao Lu,Jian Yang,Shice Wei,Shuai Bi,Ying Xia,Ming‐Xi Chen,Yang Hou,Ming Qiu,Chris Yuan,Yuezeng Su,Fan Zhang,Hai‐Wei Liang,Xiaodong Zhuang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:29 (10) 被引量:236
标识
DOI:10.1002/adfm.201806884
摘要

Abstract Electrochemically driven carbon dioxide (CO 2 ) conversion is an emerging research field due to the global warming and energy crisis. Carbon monoxide (CO) is one key product during electroreduction of CO 2 ; however, this reduction process suffers from tardy kinetics due to low local concentration of CO 2 on a catalyst's surface and low density of active sites. Herein, presented is a combination of experimental and theoretical validation of a Ni porphyrin‐based covalent triazine framework (NiPor‐CTF) with atomically dispersed NiN 4 centers as an efficient electrocatalyst for CO 2 reduction reaction (CO 2 RR). The high density and atomically distributed NiN 4 centers are confirmed by aberration‐corrected high‐angle annular dark field scanning transmission electron microscopy and extended X‐ray absorption fine structure. As a result, NiPor‐CTF exhibits high selectivity toward CO 2 RR with a Faradaic efficiency of >90% over the range from −0.6 to −0.9 V for CO conversion and achieves a maximum Faradaic efficiency of 97% at −0.9 V with a high current density of 52.9 mA cm −2 , as well as good long‐term stability. Further calculation by the density functional theory method reveals that the kinetic energy barriers decreasing for *CO 2 transition to *COOH on NiN 4 active sites boosts the performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EKKO完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
变化发布了新的文献求助10
1秒前
英俊的铭应助怕黑犀牛采纳,获得10
2秒前
古月完成签到 ,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
平贝花应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
3秒前
qing完成签到 ,获得积分10
3秒前
3秒前
情怀应助科研通管家采纳,获得10
3秒前
默问应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
文艺大白菜完成签到,获得积分10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
pluto应助yide采纳,获得10
3秒前
5秒前
夜半芜凉发布了新的文献求助10
6秒前
火柴two发布了新的文献求助10
6秒前
ry发布了新的文献求助10
6秒前
夜猫子完成签到,获得积分10
7秒前
8秒前
cui发布了新的文献求助10
9秒前
10秒前
爆米花应助岳普采纳,获得10
10秒前
科研通AI6应助量子玫瑰采纳,获得30
10秒前
量子星尘发布了新的文献求助10
10秒前
洪山老狗完成签到,获得积分10
10秒前
俏皮非笑完成签到,获得积分20
11秒前
FYX完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243