能量转换效率
氧化还原
钙钛矿(结构)
耐久性
离子
卤化物
制作
材料科学
铕
化学
光电子学
无机化学
发光
复合材料
结晶学
冶金
有机化学
病理
替代医学
医学
作者
Ligang Wang,Huanping Zhou,Junqiang Hu,Bolong Huang,Mingzi Sun,Bo‐Wei Dong,Guanhaojie Zheng,Yuan Huang,Yihua Chen,Liang Li,Huanping Zhou,Nengxu Li,Zheng Liu,Qi Chen,Ling‐Dong Sun,Chun‐Hua Yan
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2019-01-18
卷期号:363 (6424): 265-270
被引量:862
标识
DOI:10.1126/science.aau5701
摘要
A redox road to recovery Device longevity is a key issue for organic-inorganic perovskite solar cells. Encapsulation can limit degradation arising from reactions with oxygen and water, but light, electric-field, and thermal stresses can lead to metastable elemental lead and halide atom defects. Wang et al. show that for the lead-iodine system, the introduction of the rare earth europium ion pair Eu 3+ -Eu 2+ can shuttle electrons and recover lead and iodine ions (Pb 2+ and I − ). Devices incorporating this redox shuttle maintained more than 90% of their initial power conversion efficiencies under various aging conditions. Science , this issue p. 265
科研通智能强力驱动
Strongly Powered by AbleSci AI