Reactionless Maneuvering of a Space Robot in Precapture Phase

人工智能 机器人学 数学 图书馆学 运筹学 计算机科学 工程类 机器人
作者
Francis James,Suril V. Shah,Arun Kumar Singh,K. Madhava Krishna,Arun K. Misra
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:39 (10): 2419-2425 被引量:41
标识
DOI:10.2514/1.g001828
摘要

No AccessEngineering NoteReactionless Maneuvering of a Space Robot in Precapture PhaseFrancis James, Suril V. Shah, Arun K. Singh, K. Madhava Krishna and Arun K. MisraFrancis JamesOregon State University, Corvallis, Oregon 97330*M.S. Student (Robotics), College of Engineering.Search for more papers by this author, Suril V. ShahIndian Institute of Technology, Jodhpur, Rajasthan 342 011, India†Assistant Professor, Mechanical Department.Search for more papers by this author, Arun K. SinghBen-Gurion University of the Negev, 8410501 Beer Sheva, Israel‡Postdoctoral Fellow, Bio-Medical Robotics Laboratory.Search for more papers by this author, K. Madhava KrishnaInternational Institute of Information Technology, Hyderabad, Telangana 500 032, India§Associate Professor, Robotics Research Center.Search for more papers by this author and Arun K. MisraMcGill University, Montreal, Quebec H3A 0C3, Canada¶Professor, Mechanical Department.Search for more papers by this authorPublished Online:15 Jul 2016https://doi.org/10.2514/1.G001828SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Long A., Richards M. and Hastings D. E., “On-Orbit Servicing: A New Value Proposition for Satellite Design and Operation,” Journal of Spacecraft and Rockets, Vol. 44, No. 4, 2007, pp. 964–976. doi:https://doi.org/10.2514/1.27117 JSCRAG 0022-4650 LinkGoogle Scholar[2] Yoshida K., “Engineering Test Satellite VII Flight Experiments for Space Robot Dynamics and Control: Theories on Laboratory Test Beds Ten Years Ago, Now in Orbit,” International Journal of Robotics Research, Vol. 22, No. 5, 2003, pp. 321–335. doi:https://doi.org/10.1177/0278364903022005003 CrossrefGoogle Scholar[3] Aghili F., “Optimal Control of a Space Manipulator for Detumbling of a Target Satellite,” IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, 2009, pp. 3019–3024. doi:https://doi.org/10.1109/ROBOT.2009.5152235 Google Scholar[4] Nenchev D. N., Yoshida K., Vichitkulsawat P. and Uchiyama M., “Reaction Null-Space Control of Flexible Structure Mounted Manipulator Systems,” IEEE Transactions on Robotics and Automation, Vol. 15, No. 6, 1999, pp. 1011–1023. doi:https://doi.org/10.1109/70.817666 IRAUEZ 1042-296X CrossrefGoogle Scholar[5] Abiko S. and Hirzinger G., “On-Line Parameter Adaptation for a Momentum Control in the Post-Grasping of a Tumbling Target with Model Uncertainty,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Piscataway, NJ, 2007, pp. 847–852. doi:https://doi.org/10.1109/robot.2009.5152235 Google Scholar[6] Yoshida K., Hashizume K. and Abiko S., “Zero Reaction Maneuver: Flight Validation with ETS-VII Space Robot and Extension to Kinematically Redundant Arm,” Proceedings 2001 ICRA: IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), Vol. 1, IEEE, Piscataway, NJ, 2001, pp. 441–446. doi:https://doi.org/10.1109/robot.2001.932590 Google Scholar[7] Abiko S. and Yoshida K., “Adaptive Reaction Control for Space Robotic Applications with Dynamic Model Uncertainty,” Advanced Robotics, Vol. 24, Nos. 8–9, 2010, pp. 1099–1126. doi:https://doi.org/10.1163/016918610X501264 ADROEI 0169-1864 CrossrefGoogle Scholar[8] Nguyen-Huynh T.-C. and Sharf I., “Adaptive Reactionless Motion for Space Manipulator When Capturing an Unknown Tumbling Target,” IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, 2011, pp. 4202–4207. doi:https://doi.org/10.1109/ICRA.2011.5980398 Google Scholar[9] Shah S. V., Sharf I. and Misra A. K., “Reactionless Path Planning Strategies for Capture of Tumbling Objects in Space Using a Dual-Arm Robotic System,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2013-4521, 2013. doi:https://doi.org/10.2514/6.2013-4521 LinkGoogle Scholar[10] Menon C., Aboudan A., Cocuzza S., Bulgarelli A. and Angrilli F., “Free-Flying Robot Tested on Parabolic Flights: Kinematic Control,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 623–630. doi:https://doi.org/10.2514/1.8498 JGCODS 0731-5090 LinkGoogle Scholar[11] Dimitrov D. and Yoshida K., “Utilization of Holonomic Distribution Control for Reactionless Path Planning,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Piscataway, NJ, 2006, pp. 3387–3392. doi:https://doi.org/10.1109/IROS.2006.282574 Google Scholar[12] Marani G., Kim J., Yuh J. and Chung W. K., “Algorithmic Singularities Avoidance in Task-Priority Based Controller for Redundant Manipulators,” IEEE/RJS International Conference on Intelligent Robots and Systems (IROS), Vol. 4, IEEE, Piscataway, NJ, 2003, pp. 3570–3574. doi:https://doi.org/10.1109/IROS.2003.1249709 Google Scholar[13] Torres M. A. and Dubowsky S., “Minimizing Spacecraft Attitude Disturbances in Space Manipulator Systems,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 1010–1017. doi:https://doi.org/10.2514/3.20936 JGCODS 0731-5090 LinkGoogle Scholar[14] Papadopoulos E., Tortopidis I. and Nanos K., “Smooth Planning for Free-Floating Space Robots Using Polynomials,” IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, 2005, pp. 4272–4277. Google Scholar[15] Nguyen-Huynh T. C. and Sharf I., “Adaptive Reactionless Motion and Parameter Identification in Postcapture of Space Debris,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 404–414. doi:https://doi.org/10.2514/1.57856 JGCODS 0731-5090 LinkGoogle Scholar[16] Aghili F., “Time-Optimal Detumbling Control of Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 5, 2009, pp. 1671–1675. doi:https://doi.org/10.2514/1.43189 JGCODS 0731-5090 LinkGoogle Scholar[17] Cocuzza S., Pretto I. and Debei S., “Least-Squares-Based Reaction Control of Space Manipulators,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 3, 2012, pp. 976–986. doi:https://doi.org/10.2514/1.45874 JGCODS 0731-5090 LinkGoogle Scholar[18] LaValle S. M. and Kuffner J. J., “Randomized Kinodynamic Planning,” The International Journal of Robotics Research, Vol. 20, No. 5, 2001, pp. 378–400. doi:https://doi.org/10.1177/02783640122067453 CrossrefGoogle Scholar[19] LaValle S. M., Planning Algorithms, Cambridge Univ. Press, Cambridge, England, U.K., 2006, p. 794, http://planning.cs.uiuc.edu/ [retrieved 2016]. CrossrefGoogle Scholar[20] Gopalakrishnan B., Singh A. K. and Krishna K. M., “Time Scaled Collision Cone Based Trajectory Optimization Approach for Reactive Planning in Dynamic Environments,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), IEEE, Piscataway, NJ, 2014, pp. 4169–4176. doi:https://doi.org/10.1109/iros.2014.6943150 Google Scholar[21] Umetani Y. and Yoshida K., “Resolved Motion Rate Control of Space Manipulators With Generalized Jacobian Matrix,” IEEE Transactions on Robotics and Automation, Vol. 5, No. 3, 1989, pp. 303–314. doi:https://doi.org/10.1109/70.34766 IRAUEZ 1042-296X CrossrefGoogle Scholar[22] Perez A., Platt R., Konidaris G., Kaelbling L. and Lozano-Perez T., “Lqr-rrt*: Optimal Sampling-Based Motion Planning With Automatically Derived Extension Heuristics,” IEEE/RSJ International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, 2012, pp. 2537–2542. doi:https://doi.org/10.1109/icra.2012.6225177 Google Scholar[23] Hollerbach J. M., “Dynamic Scaling of Manipulator Trajectories,” Journal of Dynamic Systems, Measurement, and Control, Vol. 106, No. 1, 1984, pp. 102–106. doi:https://doi.org/10.1115/1.3149652 JDSMAA 0022-0434 CrossrefGoogle Scholar[24] Bouktir Y., Haddad M. and Chettibi T., “Trajectory Planning for a Quadrotor Helicopter,” 16th Mediterranean Conference on Control and Automation, IEEE, Piscataway, NJ, 2008, pp. 1258–1263. doi:https://doi.org/10.1109/MED.2008.4602025 Google Scholar[25] Kanehiro F., Suleiman W., Lamiraux F., Yoshida E. and Laumond J.-P., “Integrating Dynamics into Motion Planning for Humanoid Robots,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Piscataway, NJ, 2008, pp. 660–667. doi:https://doi.org/10.1109/iros.2008.4650950 Google Scholar Previous article Next article
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Myx完成签到,获得积分10
刚刚
嗯哼应助liquid采纳,获得20
1秒前
嘉心糖应助细心镜子采纳,获得20
1秒前
Obssession发布了新的文献求助10
1秒前
katrina应助科研人一枚采纳,获得10
1秒前
1秒前
2秒前
西门不二完成签到,获得积分10
2秒前
晨曦发布了新的文献求助10
2秒前
杨震完成签到,获得积分10
2秒前
天天快乐应助xiaowu采纳,获得10
3秒前
hjg完成签到,获得积分20
3秒前
思源应助细腻怜容采纳,获得10
4秒前
4秒前
5秒前
李爱国应助温柔的中蓝采纳,获得10
5秒前
z3Q应助dzjin采纳,获得10
5秒前
阿熙娃完成签到,获得积分10
6秒前
充电宝应助称心千凝采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
清脆松应助如1采纳,获得20
8秒前
BK发布了新的文献求助10
8秒前
9秒前
9秒前
笨笨娇完成签到 ,获得积分10
9秒前
9秒前
月青悠发布了新的文献求助10
11秒前
田様应助jjjwln采纳,获得10
11秒前
11秒前
su发布了新的文献求助10
11秒前
兔BF完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
karida完成签到 ,获得积分10
13秒前
俞凡白完成签到,获得积分10
13秒前
123完成签到 ,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708