The new challenges of multiplex networks: Measures and models

多路复用 多样性(控制论) 复杂系统 数据科学 计算机科学 复杂网络 选择(遗传算法) 人工智能 生物 万维网 生物信息学
作者
Federico Battiston,Vincenzo Nicosia,Vito Latora
出处
期刊:European Physical Journal-special Topics [Springer Nature]
卷期号:226 (3): 401-416 被引量:126
标识
DOI:10.1140/epjst/e2016-60274-8
摘要

What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
森先生完成签到,获得积分10
2秒前
qiqi完成签到,获得积分20
2秒前
内向的砖家完成签到,获得积分20
4秒前
zty发布了新的文献求助10
5秒前
transition发布了新的文献求助10
6秒前
默默的爆米花完成签到,获得积分10
7秒前
7秒前
小骁同学完成签到,获得积分10
7秒前
yyyy完成签到,获得积分10
7秒前
7秒前
8秒前
10秒前
小潘潘发布了新的文献求助10
11秒前
roy发布了新的文献求助30
12秒前
詹岱周发布了新的文献求助10
12秒前
机智秋莲完成签到,获得积分10
14秒前
14秒前
15秒前
汉堡包应助EKo采纳,获得10
18秒前
kido发布了新的文献求助50
20秒前
天天快乐应助科研小狗采纳,获得10
20秒前
科研通AI2S应助电催化采纳,获得10
21秒前
西科Jeremy发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
transition完成签到,获得积分10
24秒前
25秒前
orixero应助zty采纳,获得10
25秒前
xujiejiuxi发布了新的文献求助30
26秒前
26秒前
26秒前
la发布了新的文献求助10
27秒前
森先生发布了新的文献求助10
28秒前
Shyee完成签到 ,获得积分10
28秒前
29秒前
aqua_xin完成签到,获得积分0
29秒前
月and豆完成签到,获得积分10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313894
求助须知:如何正确求助?哪些是违规求助? 2946248
关于积分的说明 8529066
捐赠科研通 2621808
什么是DOI,文献DOI怎么找? 1434115
科研通“疑难数据库(出版商)”最低求助积分说明 665131
邀请新用户注册赠送积分活动 650738