In Situ Measurement of Solid Electrolyte Interphase Evolution on Silicon Anodes Using Atomic Force Microscopy

电解质 材料科学 碳酸乙烯酯 锂(药物) 碳酸丙烯酯 电化学 电化学电位 相间 电极 化学工程 无定形固体 分析化学(期刊) 结晶学 物理化学 化学 光电子学 有机化学 生物 医学 工程类 内分泌学 遗传学
作者
Insun Yoon,Daniel P. Abraham,Brett L. Lucht,Allan F. Bower,Pradeep R. Guduru
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:6 (12) 被引量:97
标识
DOI:10.1002/aenm.201600099
摘要

In situ measurements of the growth of solid electrolyte interphase (SEI) layer on silicon and the lithiation‐induced volume changes in silicon in lithium ion half‐cells are reported. Thin film amorphous silicon electrodes are fabricated in a configuration that allows unambiguous separation of the total thickness change into contribution from SEI thickness and silicon volume change. Electrodes are assembled into a custom‐designed electrochemical cell, which is integrated with an atomic force microscope. The electrodes are subjected to constant potential lithiation/delithiation at a sequence of potential values and the thickness measurements are made at each potential after equilibrium is reached. Experiments are carried out with two electrolytes—1.2 m lithium hexafluoro‐phosphate (LiPF 6 ) in ethylene carbonate (EC) and 1.2 m LiPF 6 in propylene carbonate (PC)—to investigate the influence of electrolyte composition on SEI evolution. It is observed that SEI formation occurs predominantly during the first lithiation and the maximum SEI thickness is ≈17 and 10 nm respectively for EC and PC electrolytes. This study also presents the measured Si expansion ratio versus equilibrium potential and charge capacity versus equilibrium potential; both relationships display hysteresis, which is explained in terms of the stress–potential coupling in silicon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
刚刚
立波完成签到,获得积分10
刚刚
刚刚
科目三应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
shouyu29应助科研通管家采纳,获得10
1秒前
许win应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
贪玩手链应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
嘎嘎顺利完成签到,获得积分10
2秒前
坤坤发布了新的文献求助10
3秒前
XXF发布了新的文献求助10
3秒前
wubobo完成签到,获得积分10
3秒前
4秒前
思源应助HopeStar采纳,获得10
4秒前
5秒前
zqh完成签到,获得积分20
6秒前
6秒前
嘎嘎顺利发布了新的文献求助10
6秒前
按住心动完成签到,获得积分10
7秒前
星辰大海应助屁王采纳,获得10
7秒前
Owen应助彬彬采纳,获得10
8秒前
8秒前
Jasen完成签到,获得积分10
8秒前
轻轻地呼吸完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740