An Upconversion Luminescence Nanoprobe for the Ultrasensitive Detection of Hyaluronidase

纳米探针 化学 光子上转换 透明质酸酶 荧光 检出限 猝灭(荧光) 砷酸盐 生物传感器 纳米颗粒 生物物理学 色谱法 生物化学 纳米技术 有机化学 材料科学 离子 物理 生物 量子力学
作者
Zhe Wang,Xiaohua Li,Yanchao Song,Lihong Li,Wen Shi,Huimin Ma
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:87 (11): 5816-5823 被引量:62
标识
DOI:10.1021/acs.analchem.5b01131
摘要

A new upconversion luminescence nanoprobe for the detection of hyaluronidase has been developed by coupling the hyaluronic acid-bearing upconversion fluorescence nanoparticles (HA-UCNPs) with poly(m-phenylenediamine) (PMPD) nanospheres via covalent linkage. The nanoprobe alone exhibits an extremely low background signal owing to the effective fluorescence quenching by electron-rich PMPD and the near-infrared excitation characteristic (λex = 980 nm) of HA-UCNPs; upon reaction with hyaluronidase, however, a more than 31-fold fluorescence enhancement is produced. Compared with the corresponding nanosystem assembled via physical adsorption, the prepared nanoprobe shows a largely increased stability and a much higher signal-to-background ratio, which offers an ultrasensitive assay for hyaluronidase, with a detection limit of 0.6 ng/mL. The nanoprobe has been successfully used to determine hyaluronidase in human serum samples from both colorectal cancer patients and healthy people, disclosing that the serum hyaluronidase level in colorectal cancer patients is roughly 3 times higher than that in healthy people. Furthermore, the nanoprobe has also been employed to study the activity change of hyaluronidase affected by different concentrations of arsenate (a potential carcinogen), and the results show that even a low dosage of arsenate (50 μg/L) can raise the activity of hyaluronidase by about one-third, revealing the relationship between arsenate and the enzyme. The proposed method is not only simple but also highly sensitive, making it useful to assay hyaluronidase in relevant clinical samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好多鱼爱学习完成签到 ,获得积分10
刚刚
屈昭阳发布了新的文献求助10
1秒前
baobaoxiong完成签到,获得积分10
1秒前
1秒前
1秒前
蒋若风发布了新的文献求助10
1秒前
2秒前
songyk完成签到,获得积分10
2秒前
zhoumin完成签到,获得积分10
3秒前
3秒前
高高问夏完成签到,获得积分10
4秒前
4秒前
5秒前
jingjing完成签到 ,获得积分10
5秒前
6秒前
君尧发布了新的文献求助10
6秒前
FashionBoy应助王宽宽宽采纳,获得10
6秒前
6秒前
科研通AI6应助王志新采纳,获得10
6秒前
7秒前
魏家乐完成签到,获得积分10
7秒前
wyuwqhjp发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
酷酷怀曼完成签到,获得积分10
8秒前
华仔应助QWE采纳,获得10
8秒前
li发布了新的文献求助10
8秒前
hezhuyou发布了新的文献求助10
8秒前
江山完成签到,获得积分10
8秒前
8秒前
9秒前
斯文败类应助安安采纳,获得10
10秒前
10秒前
11秒前
11秒前
娃娃菜妮发布了新的文献求助10
11秒前
orange发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836