Several variance reduction techniques improving the efficiency of the Monte Carlo estimation of the scatter contribution to a cone beam computed tomography (CBCT) scan were implemented in egs_ctct, an EGSnrc-based application for CBCT-related calculations. The largest impact on the efficiency comes from the splitting + Russian Roulette techniques which are described in detail. The fixed splitting technique is outperformed by both the position-dependent importance splitting (PDIS) and the region-dependent importance splitting (RDIS). The superiority of PDIS over RDIS observed for a water phantom with bone inserts is not observed when applying these techniques to a more realistic human chest phantom. A maximum efficiency improvement of several orders of magnitude over an analog calculation is obtained. A scatter calculation combining the reported efficiency gain with a smoothing algorithm is already in the proximity of being of practical use if a medium size computer cluster is available.