亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using a mutual information-based site transition network to map the genetic evolution of influenza A/H3N2 virus

突变 抗原漂移 系统发育树 生物 计算生物学 血凝素(流感) 甲型流感病毒 遗传学 突变率 表位 病毒 基因 抗原
作者
Zhen Xia,Gulei Jin,Jun Zhu,Ruhong Zhou
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:25 (18): 2309-2317 被引量:31
标识
DOI:10.1093/bioinformatics/btp423
摘要

Abstract Motivation: Mapping the antigenic and genetic evolution pathways of influenza A is of critical importance in the vaccine development and drug design of influenza virus. In this article, we have analyzed more than 4000 A/H3N2 hemagglutinin (HA) sequences from 1968 to 2008 to model the evolutionary path of the influenza virus, which allows us to predict its future potential drifts with specific mutations. Results: The mutual information (MI) method was used to design a site transition network (STN) for each amino acid site in the A/H3N2 HA sequence. The STN network indicates that most of the dynamic interactions are positioned around the epitopes and the receptor binding domain regions, with strong preferences in both the mutation sites and amino acid types being mutated to. The network also shows that antigenic changes accumulate over time, with occasional large changes due to multiple co-occurring mutations at antigenic sites. Furthermore, the cluster analysis by subdividing the STN into several subnetworks reveals a more detailed view about the features of the antigenic change: the characteristic inner sites and the connecting inter-subnetwork sites are both responsible for the drifts. A novel five-step prediction algorithm based on the STN shows a reasonable accuracy in reproducing historical HA mutations. For example, our method can reproduce the 2003–2004 A/H3N2 mutations with ∼70% accuracy. The method also predicts seven possible mutations for the next antigenic drift in the coming 2009–2010 season. The STN approach also agrees well with the phylogenetic tree and antigenic maps based on HA inhibition assays. Availability: All code and data are available at http://ibi.zju.edu.cn/birdflu/ Contact: ruhongz@us.ibm.com Supplementary information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助安输采纳,获得10
9秒前
Jack80发布了新的文献求助800
12秒前
lanxinyue应助科研通管家采纳,获得20
22秒前
45秒前
51秒前
叶十七发布了新的文献求助10
58秒前
叶十七完成签到,获得积分10
1分钟前
YY发布了新的文献求助10
1分钟前
Wei发布了新的文献求助10
1分钟前
Akim应助秉烛游采纳,获得10
3分钟前
xiw完成签到,获得积分10
3分钟前
3分钟前
秉烛游完成签到,获得积分10
3分钟前
3分钟前
秉烛游发布了新的文献求助10
3分钟前
科研那些年完成签到,获得积分10
4分钟前
4分钟前
打打应助科研通管家采纳,获得10
4分钟前
4分钟前
可爱的函函应助cheesy采纳,获得10
4分钟前
Londidi关注了科研通微信公众号
4分钟前
4分钟前
5分钟前
小二郎应助顶刊收割机采纳,获得10
5分钟前
5分钟前
cheesy发布了新的文献求助10
5分钟前
金钰贝儿应助cheesy采纳,获得10
6分钟前
6分钟前
lanxinyue应助科研通管家采纳,获得10
6分钟前
小蘑菇应助fleeper采纳,获得10
6分钟前
6分钟前
7分钟前
过时的电灯胆完成签到,获得积分10
7分钟前
7分钟前
7分钟前
fleeper发布了新的文献求助10
7分钟前
7分钟前
啊呜发布了新的文献求助10
7分钟前
Ava应助fleeper采纳,获得10
8分钟前
搜集达人应助九九采纳,获得10
8分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790458
关于积分的说明 7795318
捐赠科研通 2446925
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626248
版权声明 601159