Radiation Risks of Medical Imaging: Separating Fact from Fantasy

医学 幻想 医学物理学 辐射暴露 医学影像学 核医学 放射科 人工智能 计算机科学
作者
William R. Hendee,Michael K. O’Connor
出处
期刊:Radiology [Radiological Society of North America]
卷期号:264 (2): 312-321 被引量:325
标识
DOI:10.1148/radiol.12112678
摘要

During the past few years, several articles have appeared in the scientific literature that predict thousands of cancers and cancer deaths per year in the U.S. population caused by medical imaging procedures that use ionizing radiation. These predictions are computed by multiplying small and highly speculative risk factors by large populations of patients to yield impressive numbers of “cancer victims.” The risk factors are acquired from the Biological Effects of Ionizing Radiation (BEIR) VII report without attention to the caveats about their use presented in the BEIR VII report. The principal data source for the risk factors is the ongoing study of survivors of the Japanese atomic explosions, a population of individuals that is greatly different from patients undergoing imaging procedures. For the purpose of risk estimation, doses to patients are converted to effective doses, even though the International Commission on Radiological Protection warns against the use of effective dose for epidemiologic studies or for estimation of individual risks. To extrapolate cancer incidence to doses of a few millisieverts from data greater than 100 mSv, a linear no-threshold model is used, even though substantial radiobiological and human exposure data imply that it is not an appropriate model. The predictions of cancers and cancer deaths are sensationalized in electronic and print public media, resulting in anxiety and fear about medical imaging among patients and parents. Not infrequently, patients are anxious about a scheduled imaging procedure because of articles they have read in the public media. In some cases, medical imaging examinations may be delayed or deferred as a consequence, resulting in a much greater risk to patients than that associated with imaging examinations. © RSNA, 2012
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月儿完成签到 ,获得积分10
刚刚
一程完成签到 ,获得积分10
1秒前
1秒前
Henry完成签到,获得积分10
2秒前
阿熙娃完成签到 ,获得积分10
4秒前
友好的钢笔完成签到 ,获得积分10
4秒前
张张张完成签到 ,获得积分10
4秒前
灰灰喵完成签到 ,获得积分10
5秒前
沉静的清涟完成签到,获得积分10
6秒前
宇宇宇c完成签到,获得积分10
6秒前
星星完成签到,获得积分10
8秒前
科研通AI5应助hihi采纳,获得10
9秒前
水星完成签到 ,获得积分10
10秒前
机智的飞鸟完成签到 ,获得积分10
11秒前
正直的煎饼完成签到,获得积分10
12秒前
guangyu完成签到,获得积分10
12秒前
windmill完成签到,获得积分10
12秒前
科研通AI5应助开朗灵寒采纳,获得10
14秒前
MIST完成签到,获得积分10
15秒前
revew666完成签到,获得积分10
15秒前
huhu完成签到 ,获得积分10
15秒前
醉熏的千柳完成签到 ,获得积分10
15秒前
16秒前
拼命奔跑完成签到 ,获得积分10
16秒前
123456qi完成签到,获得积分10
17秒前
YANGMJ完成签到,获得积分10
17秒前
Tia完成签到 ,获得积分10
18秒前
彗星入梦完成签到 ,获得积分10
18秒前
喜悦香萱完成签到 ,获得积分10
18秒前
糊涂的服饰完成签到,获得积分10
19秒前
白枫完成签到 ,获得积分10
22秒前
shepherd完成签到,获得积分10
22秒前
22秒前
浅浅殇完成签到,获得积分10
22秒前
Ec_w完成签到 ,获得积分10
24秒前
科研通AI2S应助oral采纳,获得10
25秒前
26秒前
淡然寒蕾完成签到,获得积分10
27秒前
27秒前
977发布了新的文献求助10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733511
求助须知:如何正确求助?哪些是违规求助? 3277654
关于积分的说明 10003735
捐赠科研通 2993737
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944