羊毛甾醇
麦角甾醇
角鲨烯单加氧酶
生物化学
生物
甾醇
脱甲基酶
基因
角鲨烯
还原酶
酿酒酵母
法尼基二磷酸合酶
生物合成
酶
胆固醇
表观遗传学
作者
N. Douglas Lees,Benjamin Skaggs,Donald R. Kirsch,Martin Bard
出处
期刊:Lipids
[Wiley]
日期:1995-03-01
卷期号:30 (3): 221-226
被引量:192
摘要
Abstract Research on the ergosterol biosynthetic pathway in fungi has focused on the identification of the specific sterol structure required for normal membrane structure and function and for completion of the cell cycle. The pathway and its end product are also the targets for a number of antifungal drugs. Identification of essential steps in ergo‐sterol biosynthesis could provide new targets for the development of novel therapeutic agents. Nine of the eleven genes in the portion of the pathway committed exclusively to ergosterol biosynthesis have been cloned, and their essentiality for aerobic growth has been determined. The first three genes; ERG9 (squalene synthase), ERG1 (squalene epoxidase), and ERG7 (lanosterol synthase), have been cloned and found to be essential for aerobic viability since their absence would result in the cell being unable to synthesize a sterol molecule. The remaining eight genes encode enzymes which metabolize the first sterol, lanosterol, to ultimately form ergosterol. The two earliest genes, ERG11 (lanosterol demethylase) and ERG24 (C‐14 reductase), have been cloned and found to be essential for aerobic growth but are suppressed by mutations in the C‐5 desaturase ( ERG3 ) gene and fen1 and fen2 mutations, respectively. The remaining cloned genes, ERG6 (C‐24 methylase), ERG2 (D8Æ7 isomerase), ERG3 (C‐5 desaturase), and ERG4 (C‐24(28) reductase), have been found to be nonessential. The remaining genes not yet cloned are the C‐4 demethylase and the C‐22 desaturase ( ERG5 ).
科研通智能强力驱动
Strongly Powered by AbleSci AI