Texture measurement approaches in fresh and processed foods — A review

纹理(宇宙学) 采后 计算机科学 质量(理念) 食品 产品(数学) 食品加工 工艺工程 农业工程 食品科学 人工智能 数学 工程类 哲学 化学 几何学 认识论 园艺 图像(数学) 生物
作者
Lan Chen,Umezuruike Linus Opara
出处
期刊:Food Research International [Elsevier]
卷期号:51 (2): 823-835 被引量:300
标识
DOI:10.1016/j.foodres.2013.01.046
摘要

Knowledge of textural properties is important for stakeholders in the food value chain including producers, postharvest handlers, processors, marketers and consumers. For fresh foods such as fruit and vegetable, textural properties such as firmness are widely used as indices of readiness to harvest (maturity) to meet requirements for long term handling, storage and acceptability by the consumer. For processed foods, understanding texture properties is important for the control of processing operations such as heating, frying and drying to attain desired quality attributes of the end product. Texture measurement is therefore one of the most common techniques and procedures in food and postharvest research and industrial practice. Various approaches have been used to evaluate the sensory attributes of texture in foods. However, the high cost and time consumption of organizing panelists and preparing food limit their use, and often, sensory texture evaluation is applied in combination with instrumental measurement. Objective tests using a wide range of instruments are the most widely adopted approaches to texture measurement. Texture measurement instruments range from simple hand-held devices to the Instron machine and texture analyzer which provide time-series data of product deformation thereby allowing a wide range of texture attributes to be calculated from force–time or force–displacement data. In recent times, the application of novel and emerging non-invasive technologies such as near-infrared spectroscopy and hyper-spectral imaging to measure texture attributes has increased in both fresh and processed foods. Increasing demand for rapid, cost-effective and non-invasive measurement of texture remains a challenge in the food industry. The relationships between sensory evaluation and instrumental measurement of food texture are also discussed, which shows the importance of multidisciplinary collaboration in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
4秒前
乐呀完成签到,获得积分10
4秒前
木头人呐完成签到 ,获得积分10
4秒前
小马甲应助吴岳采纳,获得10
4秒前
天天向上赶完成签到,获得积分10
4秒前
整齐的凡梦完成签到,获得积分10
5秒前
孙冉冉发布了新的文献求助10
6秒前
MHB应助towerman采纳,获得10
7秒前
Dean发布了新的文献求助10
7秒前
8秒前
加油加油发布了新的文献求助10
8秒前
lili完成签到 ,获得积分10
9秒前
文剑武书生完成签到,获得积分10
10秒前
科研通AI5应助无限鞅采纳,获得10
10秒前
10秒前
852应助木棉采纳,获得10
10秒前
11秒前
卓哥完成签到,获得积分10
12秒前
13秒前
Agan发布了新的文献求助10
13秒前
13秒前
14秒前
morlison发布了新的文献求助10
14秒前
科研通AI5应助金色年华采纳,获得10
16秒前
充电宝应助kh453采纳,获得10
16秒前
正经俠发布了新的文献求助10
16秒前
一衣发布了新的文献求助20
17秒前
可爱的函函应助药学牛马采纳,获得10
17秒前
XM发布了新的文献求助10
17秒前
专注之双完成签到,获得积分10
18秒前
SciGPT应助十一采纳,获得10
18秒前
18秒前
A1234完成签到,获得积分10
19秒前
刘铭晨发布了新的文献求助10
20秒前
孙冉冉完成签到 ,获得积分10
23秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808