Test of Significance Based on Wavelet Thresholding and Neyman's Truncation

数学 非参数统计 统计 威尔科克森符号秩检验 统计假设检验 小波 峰度 截断(统计) 一致性(知识库) 阈值 样本量测定 经验分布函数 模式识别(心理学) 人工智能 计算机科学 曼惠特尼U检验 图像(数学) 几何学
作者
Jianqing Fan
标识
DOI:10.1080/01621459.1996.10476936
摘要

Abstract Traditional nonparametric tests, such as the Kolmogorov—Smirnov test and the Cramér—Von Mises test, are based on the empirical distribution functions. Although these tests possess root-n consistency, they effectively use only information contained in the low frequencies. This leads to low power in detecting fine features such as sharp and short aberrants as well as global features such as high-frequency alternations. The drawback can be repaired via smoothing-based test statistics. In this article we propose two such kind of test statistics based on the wavelet thresholding and the Neyman truncation. We provide extensive evidence to demonstrate that the proposed tests have higher power in detecting sharp peaks and high frequency alternations, while maintaining the same capability in detecting smooth alternative densities as the traditional tests. Similar conclusions can be made for two-sample nonparametric tests of distribution functions. In that case, the traditional linear rank tests such as the Wilcoxon test and the Fisher—Yates test have low power in detecting two nearby densities where one has local features or contains high-frequency components, because these procedures are essentially testing the uniform distribution based on the sample mean of rank statistics. In contrast, the proposed tests use more fully the sampling information and have better ability in detecting subtle features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
miumiuka发布了新的文献求助10
1秒前
greenPASS666发布了新的文献求助10
2秒前
xuanxuan发布了新的文献求助10
2秒前
zfy发布了新的文献求助10
4秒前
4秒前
4秒前
Maor完成签到,获得积分10
4秒前
白菜发布了新的文献求助10
5秒前
5秒前
6秒前
妮妮完成签到 ,获得积分10
8秒前
8秒前
傲娇的凡旋应助spurs17采纳,获得10
8秒前
长情若魔完成签到,获得积分10
10秒前
XM完成签到,获得积分10
10秒前
10秒前
LQW发布了新的文献求助30
10秒前
大个应助Rrr采纳,获得10
10秒前
11秒前
12秒前
12秒前
14秒前
zfy完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
16秒前
w17638619025完成签到 ,获得积分20
17秒前
撒上咖啡应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
18秒前
菠萝吹雪应助科研通管家采纳,获得30
18秒前
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808