Test of Significance Based on Wavelet Thresholding and Neyman's Truncation

数学 非参数统计 统计 威尔科克森符号秩检验 统计假设检验 小波 峰度 截断(统计) 一致性(知识库) 阈值 样本量测定 经验分布函数 模式识别(心理学) 人工智能 计算机科学 曼惠特尼U检验 图像(数学) 几何学
作者
Jianqing Fan
标识
DOI:10.1080/01621459.1996.10476936
摘要

Abstract Traditional nonparametric tests, such as the Kolmogorov—Smirnov test and the Cramér—Von Mises test, are based on the empirical distribution functions. Although these tests possess root-n consistency, they effectively use only information contained in the low frequencies. This leads to low power in detecting fine features such as sharp and short aberrants as well as global features such as high-frequency alternations. The drawback can be repaired via smoothing-based test statistics. In this article we propose two such kind of test statistics based on the wavelet thresholding and the Neyman truncation. We provide extensive evidence to demonstrate that the proposed tests have higher power in detecting sharp peaks and high frequency alternations, while maintaining the same capability in detecting smooth alternative densities as the traditional tests. Similar conclusions can be made for two-sample nonparametric tests of distribution functions. In that case, the traditional linear rank tests such as the Wilcoxon test and the Fisher—Yates test have low power in detecting two nearby densities where one has local features or contains high-frequency components, because these procedures are essentially testing the uniform distribution based on the sample mean of rank statistics. In contrast, the proposed tests use more fully the sampling information and have better ability in detecting subtle features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助聪慧芷巧采纳,获得10
刚刚
2秒前
贺兰发布了新的文献求助10
2秒前
3秒前
4秒前
慕凝发布了新的文献求助10
4秒前
lsn完成签到,获得积分10
4秒前
liuynnn发布了新的文献求助30
7秒前
7秒前
小妮发布了新的文献求助10
7秒前
善学以致用应助Magical采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
trial发布了新的文献求助10
9秒前
coolkid应助小学虫采纳,获得20
9秒前
10秒前
fixing发布了新的文献求助10
10秒前
yyy关闭了yyy文献求助
12秒前
12秒前
在水一方应助JingY采纳,获得10
13秒前
内向怀曼发布了新的文献求助10
13秒前
flance完成签到 ,获得积分10
13秒前
liuynnn完成签到,获得积分20
14秒前
瘦瘦妖妖发布了新的文献求助10
14秒前
华仔应助贺兰采纳,获得10
15秒前
香蕉觅云应助99668采纳,获得10
16秒前
兜哥完成签到,获得积分10
18秒前
慕凝完成签到,获得积分20
19秒前
bkagyin应助oyx53采纳,获得10
21秒前
21秒前
Leif完成签到,获得积分0
22秒前
xx完成签到,获得积分20
22秒前
22秒前
闪闪落雁完成签到,获得积分10
23秒前
Singularity应助Juli采纳,获得10
23秒前
Orange应助fixing采纳,获得10
25秒前
mouxq发布了新的文献求助10
25秒前
王丝语完成签到,获得积分10
25秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019