卤乙酸
遗传毒性
化学
氯胺
二氧化氯
环境化学
细胞毒性
氯
急性毒性
毒性
效力
生物化学
有机化学
体外
作者
Mark G. Muellner,Elizabeth D. Wagner,Kristin McCalla,Susan D. Richardson,Yin-Tak Woo,Michael J. Plewa
摘要
Haloacetonitriles (HANs) are toxic nitrogenous drinking water disinfection byproducts (N-DBPs) and are observed with chlorine, chloramine, or chlorine dioxide disinfection. Using microplate-based Chinese hamster ovary (CHO) cell assays for chronic cytotoxicity and acute genotoxicity, we analyzed 7 HANs: iodoacetonitrile (IAN), bromoacetonitrile (BAN), dibromoacetonitrile (DBAN), bromochloroacetonitrile (BCAN), chloroacetonitrile (CAN), dichloroacetonitrile (DCAN), and trichloroacetonitrile (TCAN). The cytotoxic potency (%C1/2 values) ranged from 2.8 microM (DBAN) to 0.16 mM (TCAN), with a descending rank order of DBAN > IAN approximately BAN > BCAN > DCAN > CAN > TCAN. HANs induced acute genomic DNA damage; the single cell gel electrophoresis (SCGE) genotoxicity potency ranged from 37 microM (IAN) to 2.7 mM (DCAN). The rank order of declining genotoxicity was IAN > BAN approximately DBAN > BCAN > CAN > TCAN > DCAN. The accompanying structure-activity analysis of these HANs was in general agreement with the genotoxicity rank order. These data were incorporated into our growing quantitative comparative DBP cytotoxicity and genotoxicity databases. As a chemical class, the HANs are more toxic than regulated carbon-based DBPs, such as the haloacetic acids. The toxicity of N-DBPs may become a health concern because of the increased use of alternative disinfectants, such as chloramines, which may enhance the formation of N-DBPs, including HANs.
科研通智能强力驱动
Strongly Powered by AbleSci AI