Generalized expectation-maximization segmentation of brain MR images

人工智能 计算机科学 马尔可夫随机场 期望最大化算法 图像分割 直方图 分割 体素 模式识别(心理学) 高斯分布 混合模型 公制(单位) 算法 数学 图像(数学) 统计 最大似然 物理 运营管理 量子力学 经济
作者
Arnaud A. Devalkeneer,Pierre A. Robe,Jacques Verly,Christophe Phillips
出处
期刊:Proceedings of SPIE 被引量:4
标识
DOI:10.1117/12.649523
摘要

Manual segmentation of medical images is unpractical because it is time consuming, not reproducible, and prone to human error. It is also very difficult to take into account the 3D nature of the images. Thus, semi- or fully-automatic methods are of great interest. Current segmentation algorithms based on an Expectation- Maximization (EM) procedure present some limitations. The algorithm by Ashburner et al., 2005, does not allow multichannel inputs, e.g. two MR images of different contrast, and does not use spatial constraints between adjacent voxels, e.g. Markov random field (MRF) constraints. The solution of Van Leemput et al., 1999, employs a simplified model (mixture coefficients are not estimated and only one Gaussian is used by tissue class, with three for the image background). We have thus implemented an algorithm that combines the features of these two approaches: multichannel inputs, intensity bias correction, multi-Gaussian histogram model, and Markov random field (MRF) constraints. Our proposed method classifies tissues in three iterative main stages by way of a Generalized-EM (GEM) algorithm: (1) estimation of the Gaussian parameters modeling the histogram of the images, (2) correction of image intensity non-uniformity, and (3) modification of prior classification knowledge by MRF techniques. The goal of the GEM algorithm is to maximize the log-likelihood across the classes and voxels. Our segmentation algorithm was validated on synthetic data (with the Dice metric criterion) and real data (by a neurosurgeon) and compared to the original algorithms by Ashburner et al. and Van Leemput et al. Our combined approach leads to more robust and accurate segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HJX完成签到,获得积分10
1秒前
李查查完成签到 ,获得积分10
2秒前
1335804518完成签到 ,获得积分10
2秒前
sci_zt完成签到 ,获得积分10
4秒前
xinL完成签到,获得积分10
7秒前
M6完成签到,获得积分10
9秒前
忧虑的静柏完成签到 ,获得积分10
11秒前
黑咖啡完成签到,获得积分10
12秒前
JF123_完成签到 ,获得积分10
13秒前
Zp完成签到,获得积分10
15秒前
shaaa完成签到,获得积分20
16秒前
wuyyuan完成签到 ,获得积分10
17秒前
Jasmineyfz完成签到 ,获得积分10
18秒前
欢喜可愁完成签到 ,获得积分10
24秒前
TianFuAI完成签到,获得积分10
25秒前
欢呼白晴完成签到 ,获得积分10
28秒前
Zhaowx完成签到,获得积分10
29秒前
诚心桐完成签到,获得积分10
30秒前
自律的王一博完成签到,获得积分10
32秒前
BowieHuang应助科研通管家采纳,获得10
32秒前
Xiaoxiao应助科研通管家采纳,获得10
33秒前
量子星尘发布了新的文献求助10
35秒前
东方醉蝶完成签到 ,获得积分10
37秒前
Spring完成签到,获得积分10
38秒前
王QQ完成签到 ,获得积分10
39秒前
雨诺完成签到,获得积分20
39秒前
火星完成签到 ,获得积分10
41秒前
小情绪完成签到 ,获得积分10
43秒前
西奥牧马完成签到 ,获得积分10
44秒前
聪明铸海完成签到,获得积分10
45秒前
美少叔叔完成签到,获得积分10
45秒前
善学以致用应助ding7862采纳,获得10
45秒前
46秒前
闫栋完成签到 ,获得积分10
49秒前
CosnEdge完成签到,获得积分10
50秒前
记得吃早饭完成签到 ,获得积分10
51秒前
南攻完成签到,获得积分10
51秒前
你真是那个啊完成签到,获得积分10
52秒前
弱水完成签到 ,获得积分10
58秒前
在水一方应助山君采纳,获得10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086