Generalized expectation-maximization segmentation of brain MR images

人工智能 计算机科学 马尔可夫随机场 期望最大化算法 图像分割 直方图 分割 体素 模式识别(心理学) 高斯分布 混合模型 公制(单位) 算法 数学 图像(数学) 统计 最大似然 物理 运营管理 量子力学 经济
作者
Arnaud A. Devalkeneer,Pierre A. Robe,Jacques Verly,Christophe Phillips
出处
期刊:Proceedings of SPIE 被引量:4
标识
DOI:10.1117/12.649523
摘要

Manual segmentation of medical images is unpractical because it is time consuming, not reproducible, and prone to human error. It is also very difficult to take into account the 3D nature of the images. Thus, semi- or fully-automatic methods are of great interest. Current segmentation algorithms based on an Expectation- Maximization (EM) procedure present some limitations. The algorithm by Ashburner et al., 2005, does not allow multichannel inputs, e.g. two MR images of different contrast, and does not use spatial constraints between adjacent voxels, e.g. Markov random field (MRF) constraints. The solution of Van Leemput et al., 1999, employs a simplified model (mixture coefficients are not estimated and only one Gaussian is used by tissue class, with three for the image background). We have thus implemented an algorithm that combines the features of these two approaches: multichannel inputs, intensity bias correction, multi-Gaussian histogram model, and Markov random field (MRF) constraints. Our proposed method classifies tissues in three iterative main stages by way of a Generalized-EM (GEM) algorithm: (1) estimation of the Gaussian parameters modeling the histogram of the images, (2) correction of image intensity non-uniformity, and (3) modification of prior classification knowledge by MRF techniques. The goal of the GEM algorithm is to maximize the log-likelihood across the classes and voxels. Our segmentation algorithm was validated on synthetic data (with the Dice metric criterion) and real data (by a neurosurgeon) and compared to the original algorithms by Ashburner et al. and Van Leemput et al. Our combined approach leads to more robust and accurate segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
sevenhill应助科研通管家采纳,获得10
刚刚
niuniu完成签到 ,获得积分20
刚刚
kkkkkboat完成签到,获得积分10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
panini完成签到,获得积分10
1秒前
xu完成签到,获得积分10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
美好的立果完成签到,获得积分10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
哇奥发布了新的文献求助10
1秒前
1秒前
打打应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
2秒前
似水年华发布了新的文献求助10
2秒前
weiyayayayayaya完成签到,获得积分10
2秒前
2秒前
yy完成签到,获得积分10
2秒前
2秒前
2秒前
科目三应助红叶采纳,获得10
3秒前
陶杨杨发布了新的文献求助10
3秒前
云游归尘发布了新的文献求助10
3秒前
Rory完成签到 ,获得积分10
4秒前
十六夜彦发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721