Changes in vegetation composition and plant diversity with rangeland degradation in the alpine region of Qinghai-Tibet Plateau

福布 草原 高山植物 高山气候 植被(病理学) 高原(数学) 植物群落 牧场 生态系统 生态学 物种多样性 横断面 环境科学 地理 生态演替 草原 生物 数学 病理 数学分析 医学
作者
Lin Tang,Shikui Dong,Ruth E. Sherman,Shiliang Liu,Quan‐Ru Liu,Xuexia Wang,Xukun Su,Yong Zhang,Yuanyuan Li,Yu Wu,Haidi Zhao,Chen Zhao,Xiaoyu Wu
出处
期刊:Rangeland Journal [CSIRO Publishing]
卷期号:37 (1): 107-107 被引量:62
标识
DOI:10.1071/rj14077
摘要

The changes in vegetation composition and plant diversity of three different alpine ecosystems: alpine meadow, alpine steppe and alpine desert, impacted by different levels of degradation (healthy, lightly degraded and moderately degraded) were examined across a large-scale transect on the Qinghai-Tibet Plateau. The alpine meadow was dominated by sedges, the alpine steppe was dominated by grasses and the alpine desert was dominated by shrubs. The alpine meadow had the highest species diversity, whereas the alpine steppe had the lowest and tended to be dominated by a few species. Forbs were the dominant and most diverse functional group in the alpine meadow and the alpine steppe, which was different from the alpine desert. The importance values of the dominant species and levels of diversity measured by various vegetation indices were only slightly different in the degraded sites as compared with the non-degraded alpine meadow and steppe, whereas the alpine desert showed large changes in the composition and diversity of the plant community in response to degradation. In conclusion, the plant composition of the alpine meadow and alpine steppe ecosystems was more stable and appeared more resistant to disturbance than that of the alpine desert ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助77最可爱采纳,获得10
1秒前
LL发布了新的文献求助10
1秒前
老迟到的澜完成签到 ,获得积分10
3秒前
明理的沛岚完成签到,获得积分10
4秒前
爆米花应助青禾采纳,获得10
7秒前
大模型应助jireh采纳,获得10
7秒前
8秒前
8秒前
春秋完成签到,获得积分10
9秒前
10秒前
11秒前
VDC发布了新的文献求助10
12秒前
科研通AI5应助Common采纳,获得10
14秒前
16秒前
李爱国应助兴钬采纳,获得30
16秒前
SCI发布了新的文献求助10
17秒前
18秒前
20秒前
yy123发布了新的文献求助10
22秒前
Hello应助Yinan_Yao采纳,获得20
23秒前
王小黑发布了新的文献求助10
23秒前
无助的人发布了新的文献求助30
24秒前
wanci应助哭泣青烟采纳,获得10
24秒前
呆萌幻竹完成签到 ,获得积分10
25秒前
26秒前
CipherSage应助1122采纳,获得10
28秒前
30秒前
怕黑的乌发布了新的文献求助10
31秒前
31秒前
搜集达人应助yu采纳,获得10
31秒前
小仙女212发布了新的文献求助10
32秒前
wgs623完成签到 ,获得积分10
34秒前
fmx完成签到,获得积分10
35秒前
35秒前
fff发布了新的文献求助10
35秒前
susan完成签到,获得积分10
36秒前
kaustal完成签到,获得积分10
36秒前
科研通AI5应助ZYF采纳,获得10
36秒前
38秒前
Hello应助养蚊子采纳,获得10
39秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738248
求助须知:如何正确求助?哪些是违规求助? 3281724
关于积分的说明 10026477
捐赠科研通 2998622
什么是DOI,文献DOI怎么找? 1645291
邀请新用户注册赠送积分活动 782740
科研通“疑难数据库(出版商)”最低求助积分说明 749891