Effects of elevated pCO2 and/or osmolality on the growth and recombinant tPA production of CHO cells

渗透压 二氧化碳 碳酸氢盐 二氧化碳 中国仓鼠卵巢细胞 化学 碳酸氢钠 水解物 仓鼠 生物化学 内科学 渗透浓度 生物 内分泌学 物理化学 受体 有机化学 水解 医学
作者
Roy Kimura,William M. Miller
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:52 (1): 152-160 被引量:100
标识
DOI:10.1002/(sici)1097-0290(19961005)52:1<152::aid-bit15>3.0.co;2-q
摘要

Carbon dioxide is a by-product of mammalian cell metabolism that will build up in culture if it is not removed from the medium. Increased carbon dioxide levels are generally not a problem in bench-top bioreactors, but inhibitory levels can easily be reached in large-scale vessels, especially if the aeration gas is enriched in oxygen. Due to the equilibrium attained between dissolved CO2 and bicarbonate, increased pCO2 is associated with increased osmolality in bioreactors with pH control. While a few preliminary reports indicate that elevated pCO2 levels can inhibit cell growth and/or recombinant protein production, no comprehensive analysis of the interrelated effects of elevated pCO2 and osmolality has been published. We have examined the effects of 140, 195, and 250 mm Hg (187, 260, and 333 mbar, respectively) pCO2 (with and without osmolality control) on the growth of and recombinant tPA production by MT2-1-8 Chinese hamster ovary (CHO) cells. The effects of elevated osmolality were also investigated at the control pCO2 of 36 mm Hg. Elevated pCO2 at 310 mOsm/kg osmolality inhibited cell growth in a dose-dependent fashion, with a maximum decrease of 30% in the specific growth rate (μ) at 250 mm Hg. Osmolality alone had no effect on μ, but the combination of elevated pCO2 and osmolality increased the maximal reduction in μ to 45%. Elevated pCO2 at 310 mOsm/kg osmolality decreased the specific tPA production rate (qtPA) by up to 40% at 250 mm Hg. Interestingly, while increased osmolality decreased qtPA significantly at 140 mm Hg pCO2, it had no effect or even increased qtPA at 195 and 250 mm Hg. © 1996 John Wiley & Sons, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
不知道发布了新的文献求助10
2秒前
欣喜的香彤完成签到,获得积分10
2秒前
LIDOC完成签到,获得积分20
2秒前
2秒前
tangtang完成签到,获得积分10
3秒前
宫城应助zz采纳,获得10
3秒前
4秒前
4秒前
十三发布了新的文献求助10
4秒前
xiugao发布了新的文献求助10
5秒前
ref:rain发布了新的文献求助10
6秒前
6秒前
lin发布了新的文献求助10
6秒前
6秒前
桐桐应助未闻花名采纳,获得10
7秒前
搬砖小硕发布了新的文献求助10
7秒前
阿航发布了新的文献求助10
7秒前
茶色玻璃完成签到,获得积分10
7秒前
Hungrylunch应助rajvsvj采纳,获得60
7秒前
bkagyin应助多情广山采纳,获得10
8秒前
8秒前
xiugao完成签到,获得积分10
9秒前
科研小白完成签到 ,获得积分10
9秒前
852应助ref:rain采纳,获得10
9秒前
lili发布了新的文献求助10
10秒前
独特的春发布了新的文献求助10
10秒前
打打应助笑一下算了采纳,获得10
11秒前
12秒前
科研通AI5应助zyx采纳,获得10
12秒前
科研通AI5应助xinyuwu采纳,获得10
13秒前
13秒前
科研通AI5应助柚柚袖子采纳,获得10
14秒前
brianzk1989完成签到,获得积分10
14秒前
王秋婷发布了新的文献求助20
14秒前
结实向真完成签到,获得积分20
14秒前
15秒前
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488497
求助须知:如何正确求助?哪些是违规求助? 3076158
关于积分的说明 9143934
捐赠科研通 2768523
什么是DOI,文献DOI怎么找? 1519179
邀请新用户注册赠送积分活动 703643
科研通“疑难数据库(出版商)”最低求助积分说明 701932