Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan

响应面法 人工神经网络 发酵 生物系统 数学 计算机科学 机器学习 食品科学 化学 生物
作者
Kiran M. Desai,Shrikant A. Survase,Parag S. Saudagar,S. S. Lele,Rekha S. Singhal
出处
期刊:Biochemical Engineering Journal [Elsevier]
卷期号:41 (3): 266-273 被引量:515
标识
DOI:10.1016/j.bej.2008.05.009
摘要

Response surface methodology (RSM) is the most preferred method for fermentation media optimization so far. In last two decades, artificial neural network-genetic algorithm (ANN-GA) has come up as one of the most efficient method for empirical modeling and optimization, especially for non-linear systems. This paper presents the comparative studies between ANN-GA and RSM in fermentation media optimization. Fermentative production of biopolymer scleroglucan has been chosen as case study. The yield of scleroglucan was modeled and optimized as a function of four independent variables (media components) using ANN-GA and RSM. The optimized media produced 16.22 ± 0.44 g/l scleroglucan as compared to 7.8 ± 0.54 g/l with unoptimized medium. Two methodologies were compared for their modeling, sensitivity analysis and optimization abilities. The predictive and generalization ability of both ANN and RSM were compared using separate dataset of 17 experiments from earlier published work. The average % error for ANN and RSM models were 6.5 and 20 and the CC was 0.89 and 0.99, respectively, indicating the superiority of ANN in capturing the non-linear behavior of the system. The sensitivity analysis performed by both methods has given comparative results. The prediction error in optimum yield by hybrid ANN-GA and RSM were 2% and 8%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liangliang发布了新的文献求助10
2秒前
陈军应助lyn采纳,获得30
2秒前
李健的小迷弟应助南北采纳,获得10
2秒前
2秒前
酷炫半蕾发布了新的文献求助10
2秒前
3秒前
没有昵称完成签到,获得积分10
3秒前
斯文败类应助儒雅大象采纳,获得10
3秒前
4秒前
4秒前
虚心的幻翠完成签到,获得积分20
6秒前
研友_ZGXj48发布了新的文献求助10
6秒前
sssss发布了新的文献求助10
8秒前
七七发布了新的文献求助100
8秒前
富贵完成签到,获得积分10
9秒前
小研究牲发布了新的文献求助10
10秒前
Hw完成签到,获得积分10
10秒前
雨中漫步完成签到,获得积分10
12秒前
sera完成签到 ,获得积分10
12秒前
12秒前
顾矜应助wnll采纳,获得10
12秒前
富贵发布了新的文献求助10
13秒前
温柔的代曼完成签到,获得积分20
13秒前
13秒前
JamesPei应助林林林七采纳,获得10
14秒前
15秒前
酷波er应助科研r采纳,获得10
16秒前
彩色的向珊完成签到,获得积分10
16秒前
17秒前
不爱吃香菜应助研友_ZGXj48采纳,获得10
17秒前
小蘑菇应助研友_ZGXj48采纳,获得10
17秒前
儒雅大象完成签到,获得积分10
19秒前
R.Poplar发布了新的文献求助30
20秒前
srui完成签到,获得积分10
20秒前
20秒前
Mingyue123发布了新的文献求助10
20秒前
橙zy应助人生有味是清欢采纳,获得10
21秒前
wangqi完成签到,获得积分10
21秒前
liangliang完成签到,获得积分20
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148361
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7835018
捐赠科研通 2456710
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655