Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan

响应面法 人工神经网络 发酵 生物系统 数学 计算机科学 机器学习 食品科学 化学 生物
作者
Kiran M. Desai,Shrikant A. Survase,Parag S. Saudagar,S. S. Lele,Rekha S. Singhal
出处
期刊:Biochemical Engineering Journal [Elsevier BV]
卷期号:41 (3): 266-273 被引量:515
标识
DOI:10.1016/j.bej.2008.05.009
摘要

Response surface methodology (RSM) is the most preferred method for fermentation media optimization so far. In last two decades, artificial neural network-genetic algorithm (ANN-GA) has come up as one of the most efficient method for empirical modeling and optimization, especially for non-linear systems. This paper presents the comparative studies between ANN-GA and RSM in fermentation media optimization. Fermentative production of biopolymer scleroglucan has been chosen as case study. The yield of scleroglucan was modeled and optimized as a function of four independent variables (media components) using ANN-GA and RSM. The optimized media produced 16.22 ± 0.44 g/l scleroglucan as compared to 7.8 ± 0.54 g/l with unoptimized medium. Two methodologies were compared for their modeling, sensitivity analysis and optimization abilities. The predictive and generalization ability of both ANN and RSM were compared using separate dataset of 17 experiments from earlier published work. The average % error for ANN and RSM models were 6.5 and 20 and the CC was 0.89 and 0.99, respectively, indicating the superiority of ANN in capturing the non-linear behavior of the system. The sensitivity analysis performed by both methods has given comparative results. The prediction error in optimum yield by hybrid ANN-GA and RSM were 2% and 8%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dsfsgf完成签到,获得积分20
刚刚
刚刚
Hello应助范先生采纳,获得10
1秒前
zpbb完成签到,获得积分10
2秒前
2秒前
3秒前
肖遥完成签到,获得积分10
3秒前
111发布了新的文献求助10
4秒前
小闵完成签到,获得积分10
4秒前
小蘑菇应助胡树采纳,获得10
4秒前
6秒前
6秒前
6秒前
威武雪兰完成签到,获得积分10
6秒前
6秒前
一坨完成签到 ,获得积分10
6秒前
科研通AI5应助net80yhm采纳,获得10
7秒前
lh发布了新的文献求助10
8秒前
Einson完成签到 ,获得积分10
9秒前
lx发布了新的文献求助10
9秒前
001完成签到,获得积分10
10秒前
开着飞机骑拖拉机完成签到,获得积分10
10秒前
寇婧怡完成签到 ,获得积分10
11秒前
阿湫发布了新的文献求助10
11秒前
Qsss发布了新的文献求助10
11秒前
11秒前
12秒前
JamesPei应助111采纳,获得10
12秒前
执笔完成签到,获得积分10
12秒前
手可摘星辰完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
李健应助大帅采纳,获得10
14秒前
15秒前
冷艳的火龙果完成签到,获得积分10
15秒前
不知完成签到 ,获得积分10
15秒前
Zard发布了新的文献求助10
17秒前
清仔发布了新的文献求助10
17秒前
18秒前
大地上的鱼完成签到,获得积分10
18秒前
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048