复合数
材料科学
聚电解质
化学工程
逐层
矿化(土壤科学)
纳米技术
鱼精蛋白
模板
化学
聚合物
图层(电子)
复合材料
有机化学
氮气
工程类
肝素
生物化学
作者
Jian Li,Zhongyi Jiang,Hong Wu,Lei Zhang,Lianhua Long,Yanjun Jiang
出处
期刊:Soft Matter
[The Royal Society of Chemistry]
日期:2010-01-01
卷期号:6 (3): 542-550
被引量:55
摘要
Inspired by the biological cell structure, a novel and facile method for preparing organic–inorganic composite microcapsules is developed by a synergy of layer-by-layer (LBL) self-assembly and biomimetic mineralization. The LBL microcapsule is fabricated by the alternative assembly of a negatively charged polyelectrolyte, poly(styrene sulfonate) (PSS), and a positively charged biomacromolecule, protamine (Pro), onto calcium carbonate microparticles. An inorganic silica layer is then constructed through a biomimetic mineralization process induced by the outer protamine layer. Catalase is captured in the CaCO3 templates via co-precipitation and encapsulated in the composite capsules followed by dissolution of the templates. TEM and confocal laser scanning microscopy (CLSM) observations show that the microcapsules possess a hollow structure and the enzyme inside exists in a free state. The morphology and chemical composition of the microcapsules are characterized by SEM, FTIR and NMR. The dual role of protamine as both a positive layer component and an inducer for silicification provides a simple and efficient approach to form a microbioreactor with a complete, uniform and robust outer shell. Compared to the Pro/PSS LBL microcapsule, the encapsulation efficiency, harsh condition tolerance and long-term storage stability of the encapsulated enzyme are all notably improved due to the shielding effect of the inorganic shell. The fabrication method presented here may provide a general strategy for the preparation of composite materials whose structure of organic membrane and inorganic shell could be easily tuned by varying the LBL and mineralization conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI