Estimation of turbulence closure coefficients for data centers using machine learning algorithms

湍流 结束语(心理学) Kε湍流模型 均方误差 湍流模型 算法 K-omega湍流模型 人工神经网络 计算流体力学 湍流动能 均方根 数学 统计物理学 应用数学 物理 计算机科学 机械 人工智能 统计 经济 市场经济 量子力学
作者
Srinivas Yarlanki,Bipin Rajendran,Hendrik F. Hamann
标识
DOI:10.1109/itherm.2012.6231411
摘要

CFD models of data centers often use two equation turbulence models such as the k-ε model. These models are based on closure coefficients or turbulence model constants determined from a combination of scaling/dimensional analysis and experimental measurements of flows in simple configurations. The simple configurations used to derive the turbulence model constants are often two dimensional and do not have many of the complex flow characteristics found in engineering flows. Such models perform poorly, especially in flows with large pressure gradients, swirl and strong three dimensionality, as in the case of data centers. This study attempts to use machine learning algorithms to optimize the model constants of the k-ε turbulence model for a data center by comparing simulated data with experimentally measured temperature values. For a given set of turbulence constants, we determine the Root Mean Square `error' in the model, defined as the difference between experimentally measured temperature from a data center test cell and CFD calculations using the k-ε model. An artificial neural network (ANN) based method for parameter identification is then used to find the optimal values for turbulence constants such that the error is minimized. The optimum turbulence model constants obtained by our study results in lowering the RMS error by 25% and absolute average error by 35% compared to the error obtained by using standard k-ε model constants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
xiaojian_291发布了新的文献求助10
2秒前
逍遥解牛完成签到,获得积分10
2秒前
4秒前
1117发布了新的文献求助10
5秒前
6秒前
6秒前
Loooong应助是我呀小夏采纳,获得10
6秒前
8秒前
Zeling完成签到,获得积分20
8秒前
BruceQ完成签到 ,获得积分10
9秒前
机智楼房发布了新的文献求助30
9秒前
10秒前
bkagyin应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
12秒前
不配.应助科研通管家采纳,获得10
12秒前
12秒前
不配.应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
劲秉应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
劲秉应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
12秒前
英姑应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212093
求助须知:如何正确求助?哪些是违规求助? 2860891
关于积分的说明 8126608
捐赠科研通 2526818
什么是DOI,文献DOI怎么找? 1360630
科研通“疑难数据库(出版商)”最低求助积分说明 643249
邀请新用户注册赠送积分活动 615504