Estimation of turbulence closure coefficients for data centers using machine learning algorithms

湍流 结束语(心理学) Kε湍流模型 均方误差 湍流模型 算法 K-omega湍流模型 人工神经网络 计算流体力学 湍流动能 均方根 数学 统计物理学 应用数学 物理 计算机科学 机械 人工智能 统计 量子力学 市场经济 经济
作者
Srinivas Yarlanki,Bipin Rajendran,Hendrik F. Hamann
标识
DOI:10.1109/itherm.2012.6231411
摘要

CFD models of data centers often use two equation turbulence models such as the k-ε model. These models are based on closure coefficients or turbulence model constants determined from a combination of scaling/dimensional analysis and experimental measurements of flows in simple configurations. The simple configurations used to derive the turbulence model constants are often two dimensional and do not have many of the complex flow characteristics found in engineering flows. Such models perform poorly, especially in flows with large pressure gradients, swirl and strong three dimensionality, as in the case of data centers. This study attempts to use machine learning algorithms to optimize the model constants of the k-ε turbulence model for a data center by comparing simulated data with experimentally measured temperature values. For a given set of turbulence constants, we determine the Root Mean Square `error' in the model, defined as the difference between experimentally measured temperature from a data center test cell and CFD calculations using the k-ε model. An artificial neural network (ANN) based method for parameter identification is then used to find the optimal values for turbulence constants such that the error is minimized. The optimum turbulence model constants obtained by our study results in lowering the RMS error by 25% and absolute average error by 35% compared to the error obtained by using standard k-ε model constants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZH完成签到,获得积分20
刚刚
1秒前
1秒前
小鼠星球发布了新的文献求助10
2秒前
刘玥言完成签到,获得积分20
2秒前
Harper完成签到,获得积分10
2秒前
Flynn完成签到,获得积分10
2秒前
一番完成签到,获得积分10
2秒前
huyuan发布了新的文献求助10
2秒前
逆蝶发布了新的文献求助10
3秒前
4秒前
GQZM发布了新的文献求助10
4秒前
别来无恙发布了新的文献求助10
5秒前
6秒前
受伤灵薇完成签到,获得积分10
7秒前
7秒前
zhull应助LZH采纳,获得10
8秒前
无情的宛儿完成签到,获得积分10
9秒前
9秒前
外向贞发布了新的文献求助10
11秒前
一番发布了新的文献求助10
11秒前
刘玥言发布了新的文献求助10
11秒前
12秒前
LJQ发布了新的文献求助30
12秒前
13秒前
14秒前
SQzy发布了新的文献求助10
14秒前
001完成签到,获得积分10
15秒前
CipherSage应助泡泡儿采纳,获得10
16秒前
淡淡衣完成签到,获得积分10
16秒前
17秒前
18秒前
王十二完成签到 ,获得积分10
18秒前
程程发布了新的文献求助10
19秒前
mushroomdoor发布了新的文献求助10
19秒前
SYLH应助LZH采纳,获得20
20秒前
罗wq发布了新的文献求助10
20秒前
jiangmingjiao完成签到,获得积分10
21秒前
yookia应助科研通管家采纳,获得10
21秒前
无私的芹应助科研通管家采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959533
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126048
捐赠科研通 3237690
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802916