Multitask Sparse Nonnegative Matrix Factorization for Joint Spectral–Spatial Hyperspectral Imagery Denoising

高光谱成像 计算机科学 人工智能 模式识别(心理学) 降噪 神经编码 非负矩阵分解 稀疏逼近 矩阵分解 稀疏矩阵 物理 量子力学 高斯分布 特征向量
作者
Minchao Ye,Yuntao Qian,Jun Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:53 (5): 2621-2639 被引量:143
标识
DOI:10.1109/tgrs.2014.2363101
摘要

Hyperspectral imagery (HSI) denoising is a challenging problem because of the difficulty in preserving both spectral and spatial structures simultaneously. In recent years, sparse coding, among many methods dedicated to the problem, has attracted much attention and showed state-of-the-art performance. Due to the low-rank property of natural images, an assumption can be made that the latent clean signal is a linear combination of a minority of basis atoms in a dictionary, while the noise component is not. Based on this assumption, denoising can be explored as a sparse signal recovery task with the support of a dictionary. In this paper, we propose to solve the HSI denoising problem by sparse nonnegative matrix factorization (SNMF), which is an integrated model that combines parts-based dictionary learning and sparse coding. The noisy image is used as the training data to learn a dictionary, and sparse coding is used to recover the image based on this dictionary. Unlike most HSI denoising approaches, which treat each band image separately, we take the joint spectral-spatial structure of HSI into account. Inspired by multitask learning, a multitask SNMF (MTSNMF) method is developed, in which bandwise denoising is linked across the spectral domain by sharing a common coefficient matrix. The intrinsic image structures are treated differently but interdependently within the spatial and spectral domains, which allows the physical properties of the image in both spatial and spectral domains to be reflected in the denoising model. The experimental results show that MTSNMF has superior performance on both synthetic and real-world data compared with several other denoising methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
晓森发布了新的文献求助10
4秒前
belssingoo发布了新的文献求助10
5秒前
xhsz1111完成签到 ,获得积分10
5秒前
搞怪人杰发布了新的文献求助10
5秒前
7秒前
豆豆应助微笑的觅露采纳,获得20
9秒前
丘比特应助grisco采纳,获得10
10秒前
顺心冰巧发布了新的文献求助10
12秒前
12秒前
cl0928发布了新的文献求助10
13秒前
14秒前
倪莺媛发布了新的文献求助10
15秒前
15秒前
酷波er应助Whisper采纳,获得10
16秒前
好好发布了新的文献求助10
17秒前
852应助oh采纳,获得10
18秒前
黑妖发布了新的文献求助10
18秒前
ZSWAA发布了新的文献求助10
19秒前
yyy关注了科研通微信公众号
20秒前
畅快的眼神完成签到 ,获得积分10
20秒前
田様应助千里采纳,获得10
20秒前
大个应助顺心冰巧采纳,获得10
21秒前
Liu完成签到,获得积分10
23秒前
烟花应助ZSWAA采纳,获得10
23秒前
23秒前
楠木南完成签到,获得积分10
24秒前
25秒前
Orange应助倪莺媛采纳,获得10
25秒前
隐形迎松完成签到 ,获得积分10
26秒前
Yqx发布了新的文献求助10
27秒前
SciGPT应助铠甲勇士采纳,获得10
28秒前
英姑应助Crystal采纳,获得10
30秒前
帅气的马里奥完成签到 ,获得积分10
30秒前
cm完成签到,获得积分10
31秒前
陈年人少熬夜完成签到 ,获得积分10
32秒前
ttt发布了新的文献求助10
32秒前
汉堡包应助小田采纳,获得10
33秒前
Akim应助黑妖采纳,获得10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136088
求助须知:如何正确求助?哪些是违规求助? 2786988
关于积分的说明 7780038
捐赠科研通 2443085
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625262
版权声明 600870