A Quantitative and Comparative Analysis of Endmember Extraction Algorithms From Hyperspectral Data

端元 高光谱成像 计算机科学 像素 光辉 成像光谱仪 算法 遥感 成像光谱学 模式识别(心理学) 人工智能 分光计 量子力学 物理 地质学
作者
Antonio Plaza,P. Martinez,R. Pérez,Javier Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:42 (3): 650-663 被引量:602
标识
DOI:10.1109/tgrs.2003.820314
摘要

Linear spectral unmixing is a commonly accepted approach to mixed-pixel classification in hyperspectral imagery. This approach involves two steps. First, to find spectrally unique signatures of pure ground components, usually known as endmembers, and, second, to express mixed pixels as linear combinations of endmember materials. Over the past years, several algorithms have been developed for autonomous and supervised endmember extraction from hyperspectral data. Due to a lack of commonly accepted data and quantitative approaches to substantiate new algorithms, available methods have not been rigorously compared by using a unified scheme. In this paper, we present a comparative study of standard endmember extraction algorithms using a custom-designed quantitative and comparative framework that involves both the spectral and spatial information. The algorithms considered in this study represent substantially different design choices. A database formed by simulated and real hyperspectral data collected by the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) is used to investigate the impact of noise, mixture complexity, and use of radiance/reflectance data on algorithm performance. The results obtained indicate that endmember selection and subsequent mixed-pixel interpretation by a linear mixture model are more successful when methods combining spatial and spectral information are applied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情凝丹发布了新的文献求助10
1秒前
1秒前
桐桐应助miemie采纳,获得10
1秒前
2秒前
ZZ发布了新的文献求助10
2秒前
Li发布了新的文献求助10
3秒前
NMZN发布了新的文献求助10
3秒前
甜甜玫瑰应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
jeremyher完成签到,获得积分10
6秒前
开出花来完成签到,获得积分10
6秒前
7秒前
Hello应助Jia采纳,获得10
8秒前
8秒前
jeremyher发布了新的文献求助10
8秒前
8秒前
zxh发布了新的文献求助30
10秒前
fanxiaoci发布了新的文献求助10
10秒前
DDIAO发布了新的文献求助10
11秒前
LeeY.完成签到,获得积分10
12秒前
tuzhihong发布了新的文献求助10
13秒前
13秒前
冰苏打发布了新的文献求助10
14秒前
杰仔应助Li采纳,获得10
14秒前
桐桐应助Li采纳,获得10
14秒前
知足的憨人*-*完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
16秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051899
求助须知:如何正确求助?哪些是违规求助? 2709225
关于积分的说明 7416342
捐赠科研通 2353554
什么是DOI,文献DOI怎么找? 1245569
科研通“疑难数据库(出版商)”最低求助积分说明 605799
版权声明 595870