On strategies for imbalanced text classification using SVM: A comparative study

支持向量机 计算机科学 人工智能 机器学习 分类器(UML) 加权 分类学(生物学) 水准点(测量) 数据挖掘 模式识别(心理学) 医学 植物 大地测量学 生物 放射科 地理
作者
Aixin Sun,Ee‐Peng Lim,Ying Liu
出处
期刊:Decision Support Systems [Elsevier BV]
卷期号:48 (1): 191-201 被引量:240
标识
DOI:10.1016/j.dss.2009.07.011
摘要

Many real-world text classification tasks involve imbalanced training examples. The strategies proposed to address the imbalanced classification (e.g., resampling, instance weighting), however, have not been systematically evaluated in the text domain. In this paper, we conduct a comparative study on the effectiveness of these strategies in the context of imbalanced text classification using Support Vector Machines (SVM) classifier. SVM is the interest in this study for its good classification accuracy reported in many text classification tasks. We propose a taxonomy to organize all proposed strategies following the training and the test phases in text classification tasks. Based on the taxonomy, we survey the methods proposed to address the imbalanced classification. Among them, 10 commonly-used methods were evaluated in our experiments on three benchmark datasets, i.e., Reuters-21578, 20-Newsgroups, and WebKB. Using the area under the Precision–Recall Curve as the performance measure, our experimental results showed that the best decision surface was often learned by the standard SVM, not coupled with any of the proposed strategies. We believe such a negative finding will benefit both researchers and application developers in the area by focusing more on thresholding strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李钧鹏完成签到,获得积分20
3秒前
思思发布了新的文献求助10
3秒前
5秒前
无与伦比完成签到 ,获得积分10
6秒前
万能图书馆应助李钧鹏采纳,获得10
7秒前
JamesPei应助钼yanghua采纳,获得10
8秒前
13秒前
半夏完成签到,获得积分10
13秒前
小月发布了新的文献求助10
16秒前
爱听歌契完成签到 ,获得积分10
17秒前
cy发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
幸福的向彤完成签到,获得积分10
22秒前
上官若男应助郭慧梅采纳,获得10
26秒前
阔达代云完成签到,获得积分10
27秒前
刘齐完成签到,获得积分10
28秒前
31秒前
Eternity完成签到,获得积分10
31秒前
LUO完成签到,获得积分10
32秒前
32秒前
圆锥香蕉应助小皮不皮采纳,获得20
32秒前
李健的小迷弟应助思思采纳,获得10
33秒前
8564523完成签到,获得积分10
34秒前
35秒前
小奥发布了新的文献求助10
35秒前
yflag完成签到,获得积分10
35秒前
37秒前
40秒前
40秒前
郭慧梅发布了新的文献求助10
41秒前
今晚吃什么呢完成签到,获得积分10
44秒前
赘婿应助cy采纳,获得10
45秒前
46秒前
郭慧梅完成签到,获得积分10
50秒前
51秒前
51秒前
53秒前
李爱国应助zzululu2024采纳,获得10
55秒前
桃桃发布了新的文献求助10
55秒前
55秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961032
求助须知:如何正确求助?哪些是违规求助? 3507273
关于积分的说明 11135142
捐赠科研通 3239686
什么是DOI,文献DOI怎么找? 1790338
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150