亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nutritional support to patients within the pediatric intensive setting

医学 重症监护医学 梅德林 儿科 政治学 法学
作者
Urban Fläring,Yigael Finkel
出处
期刊:Pediatric Anesthesia [Wiley]
卷期号:19 (4): 300-312 被引量:9
标识
DOI:10.1111/j.1460-9592.2009.02954.x
摘要

Pediatric AnesthesiaVolume 19, Issue 4 p. 300-312 Nutritional support to patients within the pediatric intensive setting URBAN FLARING MD PhD, URBAN FLARING MD PhD Department of Paediatric Anaesthesia and Intensive Care, Astrid Lindgren Children’s Hospital, Karolinska Hospital, Stockholm, SwedenSearch for more papers by this authorYIGAEL FINKEL MD PhD, YIGAEL FINKEL MD PhD Department of Women’s and Children’s Health, Uppsala University, Uppsala, SwedenSearch for more papers by this author URBAN FLARING MD PhD, URBAN FLARING MD PhD Department of Paediatric Anaesthesia and Intensive Care, Astrid Lindgren Children’s Hospital, Karolinska Hospital, Stockholm, SwedenSearch for more papers by this authorYIGAEL FINKEL MD PhD, YIGAEL FINKEL MD PhD Department of Women’s and Children’s Health, Uppsala University, Uppsala, SwedenSearch for more papers by this author First published: 12 March 2009 https://doi.org/10.1111/j.1460-9592.2009.02954.xCitations: 5 Urban Flaring, Department of Paediatric Anaesthesia and Intensive Care, Astrid Lindgren Children’s Hospital, Karolinska Hospital, Q1:01 Stockholm 17176, Sweden (email: [email protected]). Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Pollack MM, Ruttimann UE, Wiley JS. Nutritional depletions in critically ill children: associations with physiologic instability and increased quantity of care. JPEN J Parenter Enteral Nutr 1985; 9: 309–313. 10.1177/0148607185009003309 CASPubMedWeb of Science®Google Scholar 2 Briassoulis G, Zavras N, Hatzis T. Malnutrition, nutritional indices, and early enteral feeding in critically ill children. Nutrition 2001; 17: 548–557. 10.1016/S0899-9007(01)00578-0 CASPubMedWeb of Science®Google Scholar 3 Leteurtre S, Martinot A, Duhamel A et al. Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. Lancet 2003; 362: 192–197. 10.1016/S0140-6736(03)13908-6 PubMedWeb of Science®Google Scholar 4 Leclerc F, Leteurtre S, Duhamel A et al. Cumulative influence of organ dysfunctions and septic state on mortality of critically ill children. Am J Respir Crit Care Med 2005; 171: 348–353. 10.1164/rccm.200405-630OC PubMedWeb of Science®Google Scholar 5 Hulst JM, Van Goudoever JB, Zimmermann LJ et al. The effect of cumulative energy and protein deficiency on anthropometric parameters in a pediatric ICU population. Clin Nutr 2004; 23: 1381–1389. 10.1016/j.clnu.2004.05.006 PubMedWeb of Science®Google Scholar 6 White MS, Shepherd RW, McEniery JA. Energy expenditure measurements in ventilated critically ill children: within- and between-day variability. JPEN J Parenter Enteral Nutr 1999; 23: 300–304. 10.1177/0148607199023005300 CASPubMedWeb of Science®Google Scholar 7 Briassoulis G, Venkataraman S, Thompson AE. Energy expenditure in critically ill children. Crit Care Med 2000; 28: 1166–1172. 10.1097/00003246-200004000-00042 CASPubMedWeb of Science®Google Scholar 8 Holliday MA. Body composition and energy needs during growth. In: F Falkner, JM Tanner, eds. Human growth: A Comprehensive Treatise. New York: Plenum Press, 1986: 101–117. 10.1007/978-1-4899-0522-2_5 Web of Science®Google Scholar 9 Mlcak RP, Jeschke MG, Barrow RE et al. The influence of age and gender on resting energy expenditure in severely burned children. Ann Surg 2006; 244: 121–130. 10.1097/01.sla.0000217678.78472.d3 PubMedWeb of Science®Google Scholar 10 Vazquez Martinez JL, Ez-Romillo PD, Diez Sebastian J et al. Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period. Pediatr Crit Care Med 2004; 5: 19–27. 10.1097/01.PCC.0000102224.98095.0A PubMedGoogle Scholar 11 Turi RA, Petros AJ, Eaton S et al. Energy metabolism of infants and children with systemic inflammatory response syndrome and sepsis. Ann Surg 2001; 233: 581–587. 10.1097/00000658-200104000-00015 CASPubMedWeb of Science®Google Scholar 12 Jaksic T, Shew SB, Keshen TH et al. Do critically ill surgical neonates have increased energy expenditure? J Pediatr Surg 2001; 36: 63–67. 10.1053/jpsu.2001.20007 CASPubMedWeb of Science®Google Scholar 13 Framson CM, LeLeiko NS, Dallal GE et al. Energy expenditure in critically ill children. Pediatr Crit Care Med 2007; 8: 264–267. 10.1097/01.PCC.0000262802.81164.03 PubMedWeb of Science®Google Scholar 14 Oosterveld MJ, Van Der Kuip M, De Meer K et al. Energy expenditure and balance following pediatric intensive care unit admission: a longitudinal study of critically ill children. Pediatr Crit Care Med 2006; 7: 147–153. 10.1097/01.PCC.0000194011.18898.90 PubMedWeb of Science®Google Scholar 15 Agus MS, Jaksic T. Nutritional support of the critically ill child. Curr Opin Pediatr 2002; 14: 470–481. 10.1097/00008480-200208000-00020 PubMedWeb of Science®Google Scholar 16 Taylor R, C P, Preedy V et al. Can energy expenditure be predicted in critically ill children? Pediatr Crit Care Med 2003; 4: 176–180. 10.1097/01.PCC.0000059425.09149.D8 PubMedGoogle Scholar 17 Shew SB, Jaksic T. The metabolic needs of critically ill children and neonates. Semin Pediatr Surg 1999; 8: 131–139. 10.1016/S1055-8586(99)70014-4 CASPubMedGoogle Scholar 18 Anand KJ, Hickey PR. Pain and its effects in the human neonate and fetus. N Engl J Med 1987; 317: 1321–1329. 10.1056/NEJM198711193172105 CASPubMedWeb of Science®Google Scholar 19 Chwals WJ. Overfeeding the critically ill child: fact or fantasy? New Horiz 1994; 2: 147–155. CASPubMedGoogle Scholar 20 Tueting JL, Byerley LO, Chwals WJ. Anabolic recovery relative to degree of prematurity after acute injury in neonates. J Pediatr Surg 1999; 34: 13–16. discussion 16–17. 10.1016/S0022-3468(99)90220-8 CASPubMedWeb of Science®Google Scholar 21 Cogo PE, Carnielli VP, Rosso F et al. Protein turnover, lipolysis, and endogenous hormonal secretion in critically ill children. Crit Care Med 2002; 30: 65–70. 10.1097/00003246-200201000-00010 CASPubMedWeb of Science®Google Scholar 22 Chwals WJ, Fernandez ME, Jamie AC et al. Relationship of metabolic indexes to postoperative mortality in surgical infants. J Pediatr Surg 1993; 28: 819–822. 10.1016/0022-3468(93)90335-I CASPubMedWeb of Science®Google Scholar 23 Chwals WJ, Fernandez ME, Charles B. Serum visceral protein levels reflect protein-calorie repletion in neonates rcovering from major surgery. J Paediatr Surg 1992; 27: 317–321. 10.1016/0022-3468(92)90854-Z CASPubMedWeb of Science®Google Scholar 24 Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 1985; 39C: 5–41. Google Scholar 25 White M, Shepherd RW, McEniery JA. Energy expenditure in 100 ventilated critically ill children: improving the accuracy of predictive equations. Crit Care Med 2000; 28: 2307–2312. 10.1097/00003246-200007000-00021 CASPubMedWeb of Science®Google Scholar 26 Brandi LS, Bertolini R, Calafa M. Indirect calorimetry in critically ill patients: clinical applications and practical advice. Nutrition 1997; 13: 349–358. 10.1016/S0899-9007(97)83059-6 CASPubMedWeb of Science®Google Scholar 27 Hulst JM, Joosten KF, Tibboel D et al. Causes and consequences of inadequate substrate supply to pediatric ICU patients. Curr Opin Clin Nutr Metab Care 2006; 9: 297–303. 10.1097/01.mco.0000222115.91783.71 PubMedWeb of Science®Google Scholar 28 Ferrannini E. The theoretical basis of indirect calorimetry. Metabolism 1988; 37: 287. 10.1016/0026-0495(88)90110-2 CASPubMedWeb of Science®Google Scholar 29 Curley MA, Castillo L. Nutrition and shock in pediatric patients. New Horiz 1998; 6: 212–225. CASPubMedWeb of Science®Google Scholar 30 De Klerk G, Hop WC, De Hoog M et al. Serial measurements of energy expenditure in critically ill children: useful in optimizing nutritional therapy? Intensive Care Med 2002; 28: 1781–1785. 10.1007/s00134-002-1523-z PubMedWeb of Science®Google Scholar 31 McClave SA, McClain CJ, Snider HL. Should indirect calorimetry be used as part of nutritional assessment? J Clin Gastroenterol 2001; 33: 14–19. 10.1097/00004836-200107000-00005 CASPubMedWeb of Science®Google Scholar 32 Avitzur Y, Singer P, Dagan O et al. Resting energy expenditure in children with cyanotic and noncyanotic congenital heart disease before and after open heart surgery. JPEN J Parenter Enteral Nutr 2003; 27: 47–51. 10.1177/014860710302700147 PubMedWeb of Science®Google Scholar 33 Mehta NM, Bechard LJ, Leavitt K et al. Severe weight loss and hypermetabolic paroxysmal dysautonomia following hypoxic ischemic brain injury: the role of indirect calorimetry in the intensive care unit. JPEN J Parenter Enteral Nutr 2008; 32: 281–284. 10.1177/0148607108316196 PubMedWeb of Science®Google Scholar 34 Dvir D, Cohen J, Singer P. Computerized enrgy balance and complications in critically ill patients: an observational study. Clin Nutr 2005; 25: 37–44. 10.1016/j.clnu.2005.10.010 Web of Science®Google Scholar 35 Barr J, Hecht M, Flavin K et al. Outcomes in critically ill patients before and after the implementation of an evidence-based nutrional management protocol. Chest 2004; 125: 1446–1457. 10.1378/chest.125.4.1446 PubMedWeb of Science®Google Scholar 36 Rubinson L, Diette G, Song X et al. Low caloric intake is associated with nosocomial bloostream infections in patients in the medical intensive unit. Crit Care Med 2004; 32: 350–357. 10.1097/01.CCM.0000089641.06306.68 PubMedWeb of Science®Google Scholar 37 Villet S, Chiolero L, Bollman M et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr 2005; 24: 502–509. 10.1016/j.clnu.2005.03.006 PubMedWeb of Science®Google Scholar 38 Hulzebos CV, Sauer PJ. Energy requirements. Semin Fetal Neonatal Med 2007; 12: 2–10. 10.1016/j.siny.2006.10.008 PubMedWeb of Science®Google Scholar 39 Boehm G, Handrik W, Spenker S. Effects of bacterial sepsis on protein metabolism in infants during the first week. Biomed Biochem Acta 1986; 45: 813–819. CASPubMedWeb of Science®Google Scholar 40 Meert KL, Daphtary KM, Metheny NA. Gastric vs small-bowel feeding in critically ill children receiving mechanical ventilation: a randomized controlled trial. Chest 2004; 126: 872–878. 10.1378/chest.126.3.872 PubMedWeb of Science®Google Scholar 41 Rogers EJ, Gilbertson HR, Heine RG et al. Barriers to adequate nutrition in critically ill children. Nutrition 2003; 19: 865–868. 10.1016/S0899-9007(03)00170-9 PubMedWeb of Science®Google Scholar 42 Vist GE, Maughan RJ. The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. J Physiol 1995; 486 (Pt 2): 523–531. 10.1113/jphysiol.1995.sp020831 CASPubMedWeb of Science®Google Scholar 43 Heyland DK, Tougas G, King D et al. Impaired gastric emptying in mechanically ventilated, critically ill patients. Intensive Care Med 1996; 22: 1339–1344. 10.1007/BF01709548 CASPubMedWeb of Science®Google Scholar 44 Deane A, Chapman MJ, Fraser RJ et al. Mechanisms underlying feed intolerance in the critically ill: implications for treatment. World J Gastroenterol 2007; 13: 3909–3917. 10.3748/wjg.v13.i29.3909 CASPubMedWeb of Science®Google Scholar 45 Sternini C, Patierno S, Selmer IS et al. The opioid system in the gastrointestinal tract. Neurogastroenterol Motil 2004; 16(Suppl. 2): 3–16. 10.1111/j.1743-3150.2004.00553.x PubMedWeb of Science®Google Scholar 46 Fruhwald S, Scheidl S, Toller W et al. Low potential of dobutamine and dopexamine to block intestinal peristalsis as compared with other catecholamines. Crit Care Med 2000; 28: 2893–2897. 10.1097/00003246-200008000-00034 CASPubMedWeb of Science®Google Scholar 47 Fruhwald S, Holzer P, Metzler H. Intestinal motility disturbances in intensive care patients pathogenesis and clinical impact. Intensive Care Med 2007; 33: 36–44. 10.1007/s00134-006-0452-7 PubMedWeb of Science®Google Scholar 48 Horowitz M, Wishart JM, Jones KL et al. Gastric emptying in diabetes: an overview. Diabet Med 1996; 13: S16–S22. CASPubMedWeb of Science®Google Scholar 49 Meissner W, Dohrn B, Reinhart K. Enteral naloxone reduces gastric tube reflux and frequency of pneumonia in critical care patients during opioid analgesia. Crit Care Med 2003; 31: 776–780. 10.1097/01.CCM.0000053652.80849.9F CASPubMedWeb of Science®Google Scholar 50 Meissner W, Schmidt U, Hartmann M et al. Oral naloxone reverses opioid-associated constipation. Pain 2000; 84: 105–109. 10.1016/S0304-3959(99)00185-2 CASPubMedWeb of Science®Google Scholar 51 Tofil NM, Benner KW, Faro SJ et al. The use of enteral naloxone to treat opioid-induced constipation in a pediatric intensive care unit. Pediatr Crit Care Med 2006; 7: 252–254. 10.1097/01.PCC.0000216421.72002.09 PubMedWeb of Science®Google Scholar 52 Ho KM, Dobb GJ, Webb SA. A comparison of early gastric and post-pyloric feeding in critically ill patients: a meta-analysis. Intensive Care Med 2006; 32: 639–649. 10.1007/s00134-006-0128-3 PubMedWeb of Science®Google Scholar 53 Sanchez C, Lopez-Herce J, Carrillo A et al. Early transpyloric nutrition in critically ill children. Nutrition 2007; 23: 16–22. 10.1016/j.nut.2006.10.002 PubMedWeb of Science®Google Scholar 54 Landzinski J, Kiser TH, Fish DN et al. Gastric motility function in critically ill patients tolerant vs intolerant to gastric nutrition. JPEN J Parenter Enteral Nutr 2008; 32: 45–50. 10.1177/014860710803200145 CASPubMedWeb of Science®Google Scholar 55 Jabbar A, McClave SA. Pre-pyloric versus post-pyloric feeding. Clin Nutr 2005; 24: 719–726. 10.1016/j.clnu.2005.03.003 PubMedWeb of Science®Google Scholar 56 Petrillo-Albarano T, Pettignano R, Asfaw M et al. Use of a feeding protocol to improve nutritional support through early, aggressive, enteral nutrition in the pediatric intensive care unit. Pediatr Crit Care Med 2006; 7: 340–344. 10.1097/01.PCC.0000225371.10446.8F PubMedWeb of Science®Google Scholar 57 Chellis MJ, Sanders SV, Webster H et al. Early enteral feeding in the pediatric intensive care unit. JPEN J Parenter Enteral Nutr 1996; 20: 71–73. 10.1177/014860719602000171 CASPubMedGoogle Scholar 58 Martin C, Doig G, Heyland D et al. Multicentre, cluster-randomized clinical trial of algorithms for critical-care enteral and parenteral therapy (ACCEPT). CMAJ 2004; 20: 197–204. Google Scholar 59 Talpers SS, Romberger DJ, Bunce SB et al. Nutritionally associated increased carbon dioxide production. Excess total calories vs high proportion of carbohydrate calories. Chest 1992; 102: 551–555. 10.1378/chest.102.2.551 CASPubMedWeb of Science®Google Scholar 60 Kiiski R, Takala J. Hypermetabolism and efficiency of CO2 removal in acute respiratory failure. Chest 1994; 105: 1198–1203. 10.1378/chest.105.4.1198 CASPubMedWeb of Science®Google Scholar 61 Piedboeuf B, Chessex P, Hazan J et al. Total parenteral nutrition in the newborn infant: energy substrates and respiratory gas exchange. J Pediatr 1991; 118: 97–102. 10.1016/S0022-3476(05)81857-8 CASPubMedWeb of Science®Google Scholar 62 Letton RW, Chwals WJ, Jamie A et al. Early postoperative alterations in infant energy use increase the risk of overfeeding. J Pediatr Surg 1995; 30: 988–992. discussion 992–983. 10.1016/0022-3468(95)90327-5 CASPubMedWeb of Science®Google Scholar 63 Ling PR, Smith RJ, Bistrian BR. Acute effects of hyperglycemia and hyperinsulinemia on hepatic oxidative stress and the systemic inflammatory response in rats. Crit Care Med 2007; 35: 555–560. 10.1097/01.CCM.0000253310.02180.C2 CASPubMedWeb of Science®Google Scholar 64 Alexander JW, Gonce SJ, Miskell PW et al. A new model for studying nutrition in peritonitis. The adverse effect of overfeeding. Ann Surg 1989; 209: 334–340. 10.1097/00000658-198903000-00014 CASPubMedWeb of Science®Google Scholar 65 Vo NM, Waycaster M, Acuff RV et al. Effects of postoperative carbohydrate overfeeding. Am Surg 1987; 53: 632–635. CASPubMedWeb of Science®Google Scholar 66 Major K, Lefor AT, Wilson M. Route of nutrition support. Nutrition 2002; 18: 445–446. 10.1016/S0899-9007(02)00762-1 PubMedWeb of Science®Google Scholar 67 Goulet OJ, Revillon Y, Jan D et al. Neonatal short bowel syndrome. J Pediatr 1991; 119: 18–23. 10.1016/S0022-3476(05)81032-7 PubMedWeb of Science®Google Scholar 68 Koglmeier J, Day C, Puntis JW. Clinical outcome in patients from a single region who were dependent on parenteral nutrition for 28 days or more. Arch Dis Child 2008; 93: 300–302. 10.1136/adc.2006.109405 CASPubMedWeb of Science®Google Scholar 69 Zaloga GP. Early enteral nutritional support improves outcome: hypothesis or fact? Crit Care Med 1999; 27: 259–261. 10.1097/00003246-199902000-00024 CASPubMedWeb of Science®Google Scholar 70 Galban C, Montejo JC, Mesejo A et al. An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med 2000; 28: 643–648. 10.1097/00003246-200003000-00007 CASPubMedWeb of Science®Google Scholar 71 Kudsk KA. Current aspects of mucosal immunology and its influence by nutrition. Am J Surg 2002; 183: 390–398. 10.1016/S0002-9610(02)00821-8 PubMedWeb of Science®Google Scholar 72 Jabbar A, Chang WK, Dryden GW et al. Gut immunology and the differential response to feeding and starvation. Nutr Clin Pract 2003; 18: 461–482. 10.1177/0115426503018006461 PubMedGoogle Scholar 73 Van Der Schoor SR, Reeds PJ, Stoll B et al. The high metabolic cost of a functional gut. Gastroenterology 2002; 123: 1931–1940. 10.1053/gast.2002.37062 CASPubMedWeb of Science®Google Scholar 74 Stoll B, Henry J, Reeds PJ et al. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 1998; 128: 606–614. 10.1093/jn/128.3.606 CASPubMedWeb of Science®Google Scholar 75 Lucas A, Bloom SR, Aynsley-Green A. Gut hormones and ‘minimal enteral feeding’. Acta Paediatr Scand 1986; 75: 719–723. 10.1111/j.1651-2227.1986.tb10280.x CASPubMedWeb of Science®Google Scholar 76 De Lucas C et al. Transpyloric enteral nutrition reduces the complication rate and cost in the critically ill child. J Pediatr Gastroenterol Nutr 2000; 30: 175–180. 10.1097/00005176-200002000-00015 CASPubMedWeb of Science®Google Scholar 77 Brady M, Kinn S, O’Rourke K et al. Preoperative fasting for preventing perioperative complications in children. Cochrane Database Syst Rev 2005; CD005285. 10.1002/14651858.CD003090.pub2 Google Scholar 78 ASA. American Society of Anesthesiologist Task Force on Preoperative Fasting.. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: a report by the American Society of Anesthesiologist Task Force on Preoperative Fasting. Anesthesiology 1999; 90: 806–905. Google Scholar 79 Shime N, Ono A, Chihara E et al. Current practice of preoperative fasting: a nationwide survey in Japanese anesthesia-teaching hospitals. J Anesth 2005; 19: 187–192. 10.1007/s00540-005-0319-z PubMedGoogle Scholar 80 Mentec H, Dupont H, Bocchetti M et al. Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications. Crit Care Med 2001; 29: 1955–1961. 10.1097/00003246-200110000-00018 CASPubMedWeb of Science®Google Scholar 81 Wenzel R. Hospital-acquired pneumonia: overview of the current state of the art for prevention and control. Eur J Clin Microbiol Infect Dis 1989; 8: 56–60. 10.1007/BF01964121 CASPubMedWeb of Science®Google Scholar 82 Foglia E, Meier MD, Elward A. Ventilator-associated pneumonia in neonatal and pediatric intensive care unit patients. Clin Microbiol Rev 2007; 20: 409–425. table of contents. 10.1128/CMR.00041-06 PubMedWeb of Science®Google Scholar 83 Esparza J, Boivin MA, Hartshorne MF et al. Equal aspiration rates in gastrically and transpylorically fed critically ill patients. Intensive Care Med 2001; 27: 660–664. 10.1007/s001340100880 CASPubMedWeb of Science®Google Scholar 84 Kamat P, Favaloro-Sabatier J, Rogers K et al. Use of methylene blue spectrophotometry to detect subclinical aspiration in enterally fed intubated pediatric patients. Pediatr Crit Care Med 2008; 9: 299–303. 10.1097/PCC.0b013e318172d500 PubMedWeb of Science®Google Scholar 85 Metheny NA et al. Effect of feeding-tube properties on residual volume measurements in tube-fed patients. JPEN J Parenter Enteral Nutr 2005; 29: 192–197. 10.1177/0148607105029003192 PubMedWeb of Science®Google Scholar 86 Lowry S, Brennan M. Abnormal liver function during parenteral nutrition. J Surg Res 1979; 26: 300–307. 10.1016/0022-4804(79)90012-X Web of Science®Google Scholar 87 Soop M, Nygren J, Thorell A et al. Stress-induced insulin resistance: recent developments. Curr Opin Clin Nutr Metab Care 2007; 10: 181–186. 10.1097/MCO.0b013e32801481df CASPubMedWeb of Science®Google Scholar 88 Sheridan R et al. Maximal parenteral glucose oxidation in hypermetabolic young chilldren: a stable isotope study. JPEN 1998; 22: 212–216. 10.1177/0148607198022004212 CASPubMedWeb of Science®Google Scholar 89 Basu R, Muller DP, Papp E et al. Free radical formation in infants: the effect of critical illness, parenteral nutrition, and enteral feeding. J Pediatr Surg 1999; 34: 1091–1095. 10.1016/S0022-3468(99)90573-0 CASPubMedWeb of Science®Google Scholar 90 Koletzko B, Goulet O, Hunt J et al. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr 2005; 41(Suppl. 2): S1–S87. 10.1097/01.mpg.0000181841.07090.f4 PubMedWeb of Science®Google Scholar 91 Verbruggen S, Joosten KF, Castillo L et al. Insulin therapy in the pediatric intensive care unit. Clin Nutr 2007; 26: 677–690. 10.1016/j.clnu.2007.08.012 CASPubMedWeb of Science®Google Scholar 92 Hall NJ, Peters M, Eaton S et al. Hypergycemia is associated with increased morbidity and mortality rates in neonates with necrotizing enterocolitis. J Pediatr Surg 2004; 39: 898–901. 10.1016/j.jpedsurg.2004.02.005 CASPubMedWeb of Science®Google Scholar 93 Cochran A, Scaife ER, Hansen KW et al. Hyperglycemia and outcomes from pediatric traumatic brain injury. J Trauma 2003; 55: 1035–1038. 10.1097/01.TA.0000031175.96507.48 PubMedWeb of Science®Google Scholar 94 Alaedeen DI, Walsh MC, Chwals WJ. Total parenteral nutrition-associated hyperglycemia correlates with prolonged mechanical ventilation and hospital stay in septic infants. J Pediatr Surg 2006; 41: 239–244. discussion 239–244. 10.1016/j.jpedsurg.2005.10.045 PubMedWeb of Science®Google Scholar 95 Yung M, Wilkins B, Norton L et al. Glucose control, organ failure, and mortality in pediatric intensive care. Pediatr Crit Care Med 2008; 9: 147–152. 10.1097/PCC.0b013e3181668c22 PubMedWeb of Science®Google Scholar 96 Klein GW, Hojsak J, Schmeidler J et al. Hyperglycemia and Outcome in the Pediatric Intensive Care Unit. J Pediatr 2008; 153: 379–384. 10.1016/j.jpeds.2008.04.012 CASPubMedWeb of Science®Google Scholar 97 Van Den Berghe G, Wouters P, Weekers F et al. Intensive insulin therapy in the critically ill patients. N Engl J Med 2001; 345: 1359–1367. 10.1056/NEJMoa011300 CASPubMedWeb of Science®Google Scholar 98 Danne T, Becker D. Paediatric diabetes: achieving practical, effective insulin therapy in type 1 and type 2 diabetes. Acta Paediatr 2007; 96: 1560–1570. 10.1111/j.1651-2227.2007.00494.x CASPubMedWeb of Science®Google Scholar 99 Pickup JC, Sutton AJ. Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet Med 2008; 25: 765–774. 10.1111/j.1464-5491.2008.02486.x CASPubMedWeb of Science®Google Scholar 100 Caresta E, Pierro A, Chowdhury M et al. Oxidation of intravenous lipid in infants and children with systemic inflammatory response syndrome and sepsis. Pediatr Res 2007; 61: 228–232. 10.1203/01.pdr.0000252441.91671.e5 CASPubMedWeb of Science®Google Scholar 101 Lee EJ, Simmer K, Gibson RA. Essential fatty acid deficiency in parenterally fed preterm infants. J Paediatr Child Health 1993; 29: 51–55. 10.1111/j.1440-1754.1993.tb00440.x CASPubMedWeb of Science®Google Scholar 102 Greene HL, Moore ME, Phillips B et al. Evaluation of a pediatric multiple vitamin preparation for total parenteral nutrition. II. Blood levels of vitamins A, D, and E. Pediatrics 1986; 77: 539–547. CASPubMedWeb of Science®Google Scholar 103 Gutcher GR, Lax AA, Farrell PM. Tocopherol isomers in intravenous lipid emulsions and resultant plasma concentrations. JPEN J Parenter Enteral Nutr 1984; 8: 269–273. 10.1177/0148607184008003269 CASPubMedWeb of Science®Google Scholar 104 Lekka ME, Liokatis S, Nathanail C et al. The impact of intravenous fat emulsion administration in acute lung injury. Am J Respir Crit Care Med 2004; 169: 638–644. 10.1164/rccm.200305-620OC PubMedWeb of Science®Google Scholar 105 Suchner U, Katz DP, Furst P et al. Impact of sepsis, lung injury, and the role of lipid infusion on circulating prostacyclin and thromboxane A(2). Intensive Care Med 2002; 28: 122–129. 10.1007/s00134-001-1192-3 CASPubMedWeb of Science®Google Scholar 106 Faucher M, Bregeon F, Gainnier M et al. Cardiopulmonary effects of lipid emulsions in patients with ARDS. Chest 2003; 124: 285–291. 10.1378/chest.124.1.285 CASPubMedWeb of Science®Google Scholar 107 Fritz IB, Marquis NR. The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Proc Natl Acad Sci USA 1965; 54: 1226–1233. 10.1073/pnas.54.4.1226 CASPubMedWeb of Science®Google Scholar 108 Bonner CM, DeBrie KL, Hug G et al. Effects of parenteral L-carnitine supplementation on fat metabolism and nutrition in premature neonates. J Pediatr 1995; 126: 287–292. 10.1016/S0022-3476(95)70562-7 CASPubMedWeb of Science®Google Scholar 109 Cairns PA, Stalker DJ. Carnitine supplementation of parenterally fed neonates. Cochrane Database Syst Rev 2000; CD000950. 10.1002/14651858.CD000950 PubMedGoogle Scholar 110 Gobel Y, Koletzko B, Bohles HJ et al. Parenteral fat emulsions based on olive and soybean oils: a randomized clinical trial in preterm infants. J Pediatr Gastroenterol Nutr 2003; 37: 161–167. 10.1097/00005176-200308000-00015 PubMedWeb of Science®Google Scholar 111 Goulet O, De Potter S, Antebi H et al. Long-term efficacy and safety of a new olive oil-based intravenous fat emulsion in pediatric patients: a double-blind randomized study. Am J Clin Nutr 1999; 70: 338–345. 10.1093/ajcn/70.3.338 CASPubMedWeb of Science®Google Scholar 112 Mayer K, Seeger W. Fish oil in critical illness. Curr Opin Clin Nutr Metab Care 2008; 11: 121–127. 10.1097/MCO.0b013e3282f4cdc6 CASPubMedWeb of Science®Google Scholar 113 Koletzko B, Lien E, Agostoni C et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med 2008; 36: 5–14. 10.1515/JPM.2008.001 CASPubMedWeb of Science®Google Scholar 114 Birch EE, Garfield S, Castaneda Y et al. Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Hum Dev 2007; 83: 279–284. 10.1016/j.earlhumdev.2006.11.003 CASPubMedWeb of Science®Google Scholar 115 De Meijer VE et al. Parenteral fish oil as monotherapy for patients with parenteral nutrition-associated liver disease. Pediatr Surg Int. 2009; 25: 123–124. 10.1007/s00383-008-2255-0 PubMedWeb of Science®Google Scholar 116 Beaufrere B, Putet G, Pachiaudi C et al. Whole body protein turnover measured with 13C-leucine and energy expenditure in preterm infants. Pediatr Res 1990; 28: 147–152. CASPubMedWeb of Science®Google Scholar 117 Lyons J, Rauh-Pfeiffer A, Ming-Yu Y et al. Cysteine metabolism and whole blood glutathione synthesis in septic pediatric patients. Crit Care Med 2001; 29: 870–877. 10.1097/00003246-200104000-00036 CASPubMedWeb of Science®Google Scholar 118 Shew SB, Keshen TH, Jahoor F et al. The determinants of protein catabolism in neonates on extracorporeal membrane oxygenation. J Pediatr Surg 1999; 34: 1086–1090. 10.1016/S0022-3468(99)90572-9 CASPubMedWeb of Science®Google Scholar 119 Keshen TH, Miller RG, Jahoor F et al. Stable isotopic quantitation of protein metabolism and energy expenditure in neonates on- and post-extracorporeal life support. J Pediatr Surg 1997; 32: 958–962. discussion 962–953. 10.1016/S0022-3468(97)90377-8 CASPubMedWeb of Science®Google Scholar 120 Meyer NA, Muller MJ, Herndon DN. Nutrient support of the healing wound. New Horiz 1994; 2: 202–214. CASPubMedGoogle Scholar 121 Muller MJ, Bosy-Westphal A. Assessment of energy expenditure in children and adolescents. Curr Opin Clin Nutr Metab Care 2003; 6: 519–530. 10.1097/00075197-200309000-00005 PubMedWeb of Science®Google Scholar 122 Anand K, Sippel W, Aynsley-Green A. Randomized trial of fentanyl anaesthesia in preterm babies undergoing surgery: effect on the stress responce. Lancet 1987; 1: 62–66. 10.1016/S0140-6736(87)91907-6 CASPubMedWeb of Science®Google Scholar 123 Van Lingen R, Van Goudoever JB, Luijendijk I. Effects of early amino acid administration during total parenteral nutrition on protein metabolism in pre-term infants. Clin Science 1992; 82: 199–203. 10.1042/cs0820199 CASPubMedWeb of Science®Google Scholar 124 Maxvold N, Smoyer W, Bunchman T. Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a prospective comparison between classic hemofiltration and hemofiltration with dialysis. Crit Care Med 2000; 28: 1161–1165. 10.1097/00003246-200004000-00041 CASPubMedWeb of Science®Google Scholar 125 De Neef M et al. Nutritional goals, prescription and delivery in a pediatric intensive care unit. Clin Nutr 2008; 27: 65–71. 10.1016/j.clnu.2007.10.013 PubMedWeb of Science®Google Scholar 126 Chan LN. Nutritional support in acute renal failure. Curr Opin Clin Nutr Metab Care 2004; 7: 207–212. 10.1097/00075197-200403000-00016 CASPubMedWeb of Science®Google Scholar 127 Scheinkestel CD, Kar L, Marshall K et al. Prospective randomized trial to assess caloric and protein needs of critically Ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition 2003; 19: 909–916. 10.1016/S0899-9007(03)00175-8 CASPubMedWeb of Science®Google Scholar 128 Berg A, Norberg Å, Martling CR et al. Glutamine kinetics during intravenous glutamine supplementation in ICU patients on continuous replacement therapy. Intensive Care Med 2007; 33: 660–666. 10.1007/s00134-007-0547-9 CASPubMedWeb of Science®Google Scholar 129 Klein CJ, Moser-Veillon PB, Schweitzer A et al. Magnesium, calcium, zinc, and nitrogen loss in trauma patients during continuous renal replacement therapy. JPEN J Parenter Enteral Nutr 2002; 26: 77–92. discussion 92–73. 10.1177/014860710202600277 CASPubMedWeb of Science®Google Scholar 130 Maggini S, Wintergerst ES, Beveridge S et al. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr 2007; 98(Suppl. 1): S29–S35. 10.1017/S0007114507832971 CASPubMedWeb of Science®Google Scholar 131 Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 2007; 51: 301–323. 10.1159/000107673 CASPubMedWeb of Science®Google Scholar 132 Fortin MC, Amyot SL, Geadah D et al. Serum concentrations and clearances of folic acid and pyridoxal-5-phosphate during venovenous continuous renal replacement therapy. Intensive Care Med 1999; 25: 594–598. 10.1007/s001340050908 CASPubMedWeb of Science®Google Scholar 133 Berger MM, Shenkin A, Revelly JP et al. Copper, selenium, zinc, and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am J Clin Nutr 2004; 80: 410–416. 10.1093/ajcn/80.2.410 CASPubMedWeb of Science®Google Scholar 134 Voruganti VS, Klein GL, Lu HX et al. Impaired zinc and copper status in children with burn injuries: need to reassess nutritional requirements. Burns 2005; 31: 711–716. 10.1016/j.burns.2005.04.026 PubMedWeb of Science®Google Scholar 135 Cunningham JJ, Lydon MK, Briggs S et al. Zinc and copper status of severely burned children during TPN. J Am Coll Nutr 1991; 10: 57–62. 10.1080/07315724.1991.10718127 CASPubMedWeb of Science®Google Scholar 136 Hoque KM, Binder HJ. Zinc in the treatment of acute diarrhea: current status and assessment. Gastroenterology 2006; 130: 2201–2205. 10.1053/j.gastro.2006.02.062 CASPubMedWeb of Science®Google Scholar 137 Briassoulis G, Filippou O, Hatzi E et al. Early enteral administration of immunonutrition in critically ill children: results of a blinded randomized controlled clinical trial. Nutrition 2005; 21: 799–807. 10.1016/j.nut.2004.12.006 PubMedWeb of Science®Google Scholar 138 Heyland DK, Dhaliwal R, Suchner U et al. Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med 2005; 31: 327–337. 10.1007/s00134-004-2522-z PubMedWeb of Science®Google Scholar 139 Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 2001; 29: 2264–2270. 10.1097/00003246-200112000-00005 CASPubMedWeb of Science®Google Scholar 140 Briassoulis GC, Zavras NJ, Hatzis MT. Effectiveness and safety of a protocol for promotion of early intragastric feeding in critically ill children. Pediatr Crit Care Med 2001; 2: 113–121. 10.1097/00130478-200104000-00004 CASPubMedGoogle Scholar Citing Literature Volume19, Issue4April 2009Pages 300-312 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
physicalproblem完成签到,获得积分10
1秒前
HTniconico完成签到 ,获得积分10
34秒前
34秒前
1分钟前
lanxinyue完成签到,获得积分10
1分钟前
瓜皮糖浆完成签到,获得积分10
1分钟前
1分钟前
1分钟前
慕青应助JoeyCory采纳,获得10
1分钟前
1分钟前
zjl123发布了新的文献求助10
1分钟前
晴天完成签到,获得积分10
2分钟前
2分钟前
2分钟前
冷静的访天完成签到 ,获得积分10
2分钟前
认真路灯完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
平常的羊完成签到 ,获得积分10
3分钟前
简因完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
牛马正在写文章完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
香蕉觅云应助Alexis2047采纳,获得10
4分钟前
打打应助个性的长颈鹿采纳,获得10
4分钟前
4分钟前
Akim应助hh采纳,获得10
5分钟前
5分钟前
5分钟前
caca完成签到,获得积分10
5分钟前
只如初完成签到,获得积分10
5分钟前
6分钟前
6分钟前
酷波er应助zjl123采纳,获得10
6分钟前
6分钟前
爱撒娇的孤丹完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303242
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482470
捐赠科研通 2611463
什么是DOI,文献DOI怎么找? 1425908
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005