Reference data for quantitative sensory testing (QST): Refined stratification for age and a novel method for statistical comparison of group data

参考数据 标准化 定量感官测试 统计 人口 样本量测定 计算机科学 感觉系统 数据挖掘 医学 心理学 数学 认知心理学 环境卫生 操作系统
作者
Walter Magerl,Elena K. Krumova,Ralf Baron,Thomas R. Tölle,Rolf‐Detlef Treede,Christoph Maier
出处
期刊:Pain [Ovid Technologies (Wolters Kluwer)]
卷期号:151 (3): 598-605 被引量:481
标识
DOI:10.1016/j.pain.2010.07.026
摘要

Clinical use of quantitative sensory testing (QST) requires standardization. The German research network on neuropathic pain (DFNS) solves this problem by defining reference data stratified for test site, gender and age for a standardized QST protocol. In this report we have targeted two further problems: how to adjust for age-related sensory changes, and how to compare groups of patients with the reference database. We applied a moving average across ages to define reference values per decade. This analysis revealed that women were more sensitive to heat pain independent of age. In contrast, functions were converging at older age for blunt pressure pain, but diverging for punctate mechanical pain (pin prick). The probability that an individual patient dataset is within the range of normal variability is calculated by z-transform using site-, gender- and age-specific reference data. To compare groups of patients with reference data, we evaluated two techniques: A: paired t-test versus fixed mean; i.e. the reference mean value is considered as the known population mean, B: non-paired t-test versus the reference dataset and number of cases restrained to the same number of cases as the patient data set. Simulations for various sample sizes and variances showed that method B was more conservative than method A. We present a simple way of calculating method B for data that have been z-normalized. This technique makes the DFNS reference data bank applicable for researchers beyond the DFNS community without a need for subsampling of subjects from the database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助平淡南霜采纳,获得10
1秒前
wanci应助小小爱吃百香果采纳,获得10
1秒前
2秒前
2秒前
2秒前
4秒前
我是站长才怪应助xg采纳,获得10
4秒前
decimalpoint完成签到 ,获得积分10
6秒前
Benliu发布了新的文献求助20
6秒前
6秒前
Carol完成签到,获得积分10
6秒前
sw98318发布了新的文献求助10
7秒前
wang1090完成签到,获得积分10
7秒前
奋斗的许婷2完成签到,获得积分10
7秒前
7秒前
8秒前
hll完成签到,获得积分20
8秒前
阳yang发布了新的文献求助10
8秒前
9秒前
wang1090发布了新的文献求助30
10秒前
呜呜呜呜完成签到,获得积分10
10秒前
10秒前
Riki发布了新的文献求助10
11秒前
88发布了新的文献求助10
11秒前
12秒前
充电宝应助zfy采纳,获得10
13秒前
sak完成签到,获得积分10
14秒前
Shuo Yang发布了新的文献求助20
14秒前
呜呜呜呜发布了新的文献求助10
14秒前
在水一方应助hhzz采纳,获得10
14秒前
旧是完成签到 ,获得积分10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
杨小胖完成签到 ,获得积分10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
mm发布了新的文献求助10
16秒前
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
shouyu29应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
RC_Wang应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808