单胺类
单胺类神经递质
神经科学
心理学
去甲肾上腺素
多巴胺
血清素
神经传递
边缘系统
5-羟色胺能
医学
抗抑郁药
受体
内科学
中枢神经系统
海马体
标识
DOI:10.1016/j.pnpbp.2013.04.009
摘要
Extensive studies showed that monoaminergic neurotransmission that involves serotonin (5-HT), norepinephrine (NE) and dopamine (DA) exerts major influence on brain circuits concerned by the regulation of mood, reactivity to psychological stress, self-control, motivation, drive, and cognitive performance. Antidepressants targeting monoamines directly affect the functional tone of these circuits, notably in limbic and frontocortical areas, and evidence has been provided that this action plays a key role in their therapeutic efficacy. Indeed, at least some of functional changes detected by functional magnetic resonance imaging in emotion- and cognitive-related circuits such as the one involving limbic-cortical-striatal-pallidal-thalamic connections in depressed patients can be reversed by monoamine-targeted antidepressants. However, antidepressants acting selectively on only one monoamine, such as selective inhibitors of 5-HT or NE reuptake, alleviate depression symptoms in a limited percentage of patients, and are poorly effective to prevent recurrence. Thorough investigations for the last 30 years allowed the demonstration of the existence of functional interactions between 5-HT, NE and DA systems, and the identification of the specific receptors involved. In particular, 5-HT systems were shown to exert negative influence on NE and DA systems through 5-HT2A and 5-HT2C receptor- mediated mechanisms, respectively. On the other hand, complex positive and negative influences of NE system on 5-HT neurotransmission are mediated through α1- and α2-adrenergic receptors, respectively. These data provided a rationale for the design of new, multimodal, therapeutic strategies involving drugs acting not only at the "historical" targets such as the 5-HT and/or the NE transporter, but also at other molecular targets to improve their efficacy and their tolerability.
科研通智能强力驱动
Strongly Powered by AbleSci AI