Spatial bias in the GBIF database and its effect on modeling species' geographic distributions

分布(数学) 数据质量 物种分布 空间分布 数据库 取样偏差 空间数据库 航程(航空) 空间分析 计算机科学 地理 数据挖掘 统计 生态学 样本量测定 数学 栖息地 生物 运营管理 数学分析 复合材料 经济 公制(单位) 材料科学
作者
Jan Beck,Marianne Böller,Andreas Erhardt,Wolfgang Schwanghart
出处
期刊:Ecological Informatics [Elsevier]
卷期号:19: 10-15 被引量:574
标识
DOI:10.1016/j.ecoinf.2013.11.002
摘要

Species distribution modeling, in combination with databases of specimen distribution records, is advocated as a solution to the problem of distributional data limitation in biogeography and ecology. The global biodiversity information facility (GBIF), a portal that collates digitized collection and survey data, is the largest online provider of distribution records. However, all distributional databases are spatially biassed due to uneven effort of sampling, data storage and mobilization. Such bias is particularly pronounced in GBIF, where nation-wide differences in funding and data sharing lead to huge differences in contribution to GBIF. We use a common Eurasian butterfly (Aglais urticae) as an exemplar taxon to provide evidence that range model quality is decreasing due to the spatial clustering of distributional records in GBIF. Furthermore, we show that such loss of model quality would go unnoticed with standard methods of model quality evaluation. Using evaluations of model predictions of the Swiss distribution of the species, we compare distribution models of full data with data where a subsampling procedure removes spatial bias at the cost of record numbers, but not of spatial extent of records. We show that data with less spatial bias produce better predictive models even though they are based on less input data. Our subsampling routine may therefore be a suitable method to reduce the impact of spatial bias to species distribution models. Our results warn of automatized applications of species distribution models to distributional databases (as has been advocated and implemented), as internal model evaluation did not show the decline of model quality with increased spatial bias (but rather the opposite) while expert evaluation clearly did.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hubert完成签到,获得积分10
刚刚
典雅嫣完成签到,获得积分10
刚刚
青青小筑发布了新的文献求助10
刚刚
完美世界应助marrylet采纳,获得10
刚刚
1秒前
不倦应助邓邓采纳,获得10
1秒前
今晚吃什么完成签到,获得积分10
2秒前
wen完成签到,获得积分10
2秒前
科研通AI6应助HYD采纳,获得10
2秒前
科研通AI6应助HYD采纳,获得10
2秒前
花城完成签到 ,获得积分10
2秒前
2秒前
斯文败类应助重要的盼雁采纳,获得10
3秒前
3秒前
妮露的修狗完成签到,获得积分10
3秒前
fxf完成签到,获得积分10
3秒前
SGQT发布了新的文献求助10
3秒前
XYF完成签到 ,获得积分10
5秒前
bkagyin应助nihao采纳,获得10
5秒前
开放的半烟完成签到,获得积分10
5秒前
5秒前
可爱的函函应助典雅嫣采纳,获得10
5秒前
5秒前
稳重紫蓝完成签到,获得积分10
6秒前
研友_VZG7GZ应助酷炫的火车采纳,获得10
6秒前
正念完成签到,获得积分10
6秒前
啊撒网大大e完成签到,获得积分10
7秒前
小小雨泪发布了新的文献求助10
7秒前
草上飞发布了新的文献求助10
8秒前
五岳三鸟完成签到,获得积分10
8秒前
远之完成签到 ,获得积分10
8秒前
wangchiyi完成签到,获得积分10
9秒前
9秒前
刘珈熹完成签到 ,获得积分10
9秒前
S月小小完成签到,获得积分10
9秒前
9秒前
欣慰的天奇完成签到,获得积分20
9秒前
SGQT完成签到,获得积分10
9秒前
牛牛发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5395898
求助须知:如何正确求助?哪些是违规求助? 4516372
关于积分的说明 14059288
捐赠科研通 4428272
什么是DOI,文献DOI怎么找? 2432028
邀请新用户注册赠送积分活动 1424218
关于科研通互助平台的介绍 1403436