Spatial bias in the GBIF database and its effect on modeling species' geographic distributions

分布(数学) 数据质量 物种分布 空间分布 数据库 取样偏差 空间数据库 航程(航空) 空间分析 计算机科学 地理 数据挖掘 统计 生态学 样本量测定 数学 栖息地 生物 数学分析 公制(单位) 运营管理 材料科学 经济 复合材料
作者
Jan Beck,Marianne Böller,Andreas Erhardt,Wolfgang Schwanghart
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:19: 10-15 被引量:574
标识
DOI:10.1016/j.ecoinf.2013.11.002
摘要

Species distribution modeling, in combination with databases of specimen distribution records, is advocated as a solution to the problem of distributional data limitation in biogeography and ecology. The global biodiversity information facility (GBIF), a portal that collates digitized collection and survey data, is the largest online provider of distribution records. However, all distributional databases are spatially biassed due to uneven effort of sampling, data storage and mobilization. Such bias is particularly pronounced in GBIF, where nation-wide differences in funding and data sharing lead to huge differences in contribution to GBIF. We use a common Eurasian butterfly (Aglais urticae) as an exemplar taxon to provide evidence that range model quality is decreasing due to the spatial clustering of distributional records in GBIF. Furthermore, we show that such loss of model quality would go unnoticed with standard methods of model quality evaluation. Using evaluations of model predictions of the Swiss distribution of the species, we compare distribution models of full data with data where a subsampling procedure removes spatial bias at the cost of record numbers, but not of spatial extent of records. We show that data with less spatial bias produce better predictive models even though they are based on less input data. Our subsampling routine may therefore be a suitable method to reduce the impact of spatial bias to species distribution models. Our results warn of automatized applications of species distribution models to distributional databases (as has been advocated and implemented), as internal model evaluation did not show the decline of model quality with increased spatial bias (but rather the opposite) while expert evaluation clearly did.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助才哥采纳,获得10
刚刚
水墨橙子发布了新的文献求助200
1秒前
Owen应助默默碧空采纳,获得10
1秒前
Hello应助鲜艳的皮皮虾采纳,获得10
2秒前
3秒前
3秒前
3秒前
贪玩的天荷完成签到 ,获得积分10
3秒前
三金完成签到,获得积分10
5秒前
6秒前
ggy发布了新的文献求助10
6秒前
酷酷的冰真应助Keira采纳,获得20
6秒前
哈哈哈哈哈完成签到,获得积分10
8秒前
嘻哈哈完成签到,获得积分10
10秒前
阔达乘云完成签到 ,获得积分10
13秒前
14秒前
15秒前
17秒前
18秒前
默默碧空发布了新的文献求助10
19秒前
20秒前
搜集达人应助江江采纳,获得10
21秒前
21秒前
Delia发布了新的文献求助10
22秒前
zhu发布了新的文献求助10
23秒前
huangbing123发布了新的文献求助10
23秒前
24秒前
坤坤大白发布了新的文献求助10
25秒前
25秒前
陈锦辞完成签到,获得积分10
26秒前
呆萌凤发布了新的文献求助10
26秒前
27秒前
思源应助oasis采纳,获得10
29秒前
思源应助科研通管家采纳,获得10
29秒前
今后应助科研通管家采纳,获得10
29秒前
29秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
逸之狐应助科研通管家采纳,获得20
30秒前
彭于晏应助科研通管家采纳,获得10
30秒前
zhuang应助科研通管家采纳,获得10
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962328
求助须知:如何正确求助?哪些是违规求助? 3508472
关于积分的说明 11141017
捐赠科研通 3241123
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872827
科研通“疑难数据库(出版商)”最低求助积分说明 803382