Spatial bias in the GBIF database and its effect on modeling species' geographic distributions

分布(数学) 数据质量 物种分布 空间分布 数据库 取样偏差 空间数据库 航程(航空) 空间分析 计算机科学 地理 数据挖掘 统计 生态学 样本量测定 数学 栖息地 生物 数学分析 公制(单位) 运营管理 材料科学 经济 复合材料
作者
Jan Beck,Marianne Böller,Andreas Erhardt,Wolfgang Schwanghart
出处
期刊:Ecological Informatics [Elsevier]
卷期号:19: 10-15 被引量:484
标识
DOI:10.1016/j.ecoinf.2013.11.002
摘要

Species distribution modeling, in combination with databases of specimen distribution records, is advocated as a solution to the problem of distributional data limitation in biogeography and ecology. The global biodiversity information facility (GBIF), a portal that collates digitized collection and survey data, is the largest online provider of distribution records. However, all distributional databases are spatially biassed due to uneven effort of sampling, data storage and mobilization. Such bias is particularly pronounced in GBIF, where nation-wide differences in funding and data sharing lead to huge differences in contribution to GBIF. We use a common Eurasian butterfly (Aglais urticae) as an exemplar taxon to provide evidence that range model quality is decreasing due to the spatial clustering of distributional records in GBIF. Furthermore, we show that such loss of model quality would go unnoticed with standard methods of model quality evaluation. Using evaluations of model predictions of the Swiss distribution of the species, we compare distribution models of full data with data where a subsampling procedure removes spatial bias at the cost of record numbers, but not of spatial extent of records. We show that data with less spatial bias produce better predictive models even though they are based on less input data. Our subsampling routine may therefore be a suitable method to reduce the impact of spatial bias to species distribution models. Our results warn of automatized applications of species distribution models to distributional databases (as has been advocated and implemented), as internal model evaluation did not show the decline of model quality with increased spatial bias (but rather the opposite) while expert evaluation clearly did.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助小小邹采纳,获得10
1秒前
1秒前
2秒前
烟花发布了新的文献求助10
2秒前
3秒前
4秒前
wmemrnrnr发布了新的文献求助10
4秒前
JamesPei应助嗳7采纳,获得10
5秒前
6秒前
璇儿发布了新的文献求助10
6秒前
6秒前
Zzj完成签到,获得积分20
6秒前
那个人发布了新的文献求助10
7秒前
7秒前
欢喜的凡发布了新的文献求助10
8秒前
小蘑菇应助连冷安采纳,获得10
8秒前
是否完成签到,获得积分10
8秒前
8秒前
9秒前
chemier027发布了新的文献求助10
9秒前
坚强的笑天完成签到,获得积分10
9秒前
1234发布了新的文献求助10
9秒前
恩希玛完成签到,获得积分10
9秒前
11秒前
12秒前
科研通AI2S应助那个人采纳,获得10
12秒前
12秒前
13秒前
隐形曼青应助璇儿采纳,获得10
13秒前
StarPathoflight完成签到 ,获得积分10
13秒前
Zzj发布了新的文献求助10
13秒前
疏木51发布了新的文献求助10
13秒前
ding应助一只燕子采纳,获得10
14秒前
14秒前
15秒前
15秒前
阿鑫发布了新的文献求助10
15秒前
陈陈陈完成签到,获得积分10
16秒前
传奇3应助Amazing采纳,获得10
16秒前
Lucas应助Amazing采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124336
求助须知:如何正确求助?哪些是违规求助? 2774637
关于积分的说明 7723368
捐赠科研通 2430117
什么是DOI,文献DOI怎么找? 1290937
科研通“疑难数据库(出版商)”最低求助积分说明 621972
版权声明 600297