Spatial bias in the GBIF database and its effect on modeling species' geographic distributions

分布(数学) 数据质量 物种分布 空间分布 数据库 取样偏差 空间数据库 航程(航空) 空间分析 计算机科学 地理 数据挖掘 统计 生态学 样本量测定 数学 栖息地 生物 运营管理 数学分析 复合材料 经济 公制(单位) 材料科学
作者
Jan Beck,Marianne Böller,Andreas Erhardt,Wolfgang Schwanghart
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:19: 10-15 被引量:574
标识
DOI:10.1016/j.ecoinf.2013.11.002
摘要

Species distribution modeling, in combination with databases of specimen distribution records, is advocated as a solution to the problem of distributional data limitation in biogeography and ecology. The global biodiversity information facility (GBIF), a portal that collates digitized collection and survey data, is the largest online provider of distribution records. However, all distributional databases are spatially biassed due to uneven effort of sampling, data storage and mobilization. Such bias is particularly pronounced in GBIF, where nation-wide differences in funding and data sharing lead to huge differences in contribution to GBIF. We use a common Eurasian butterfly (Aglais urticae) as an exemplar taxon to provide evidence that range model quality is decreasing due to the spatial clustering of distributional records in GBIF. Furthermore, we show that such loss of model quality would go unnoticed with standard methods of model quality evaluation. Using evaluations of model predictions of the Swiss distribution of the species, we compare distribution models of full data with data where a subsampling procedure removes spatial bias at the cost of record numbers, but not of spatial extent of records. We show that data with less spatial bias produce better predictive models even though they are based on less input data. Our subsampling routine may therefore be a suitable method to reduce the impact of spatial bias to species distribution models. Our results warn of automatized applications of species distribution models to distributional databases (as has been advocated and implemented), as internal model evaluation did not show the decline of model quality with increased spatial bias (but rather the opposite) while expert evaluation clearly did.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dicy发布了新的文献求助10
1秒前
JamesPei应助暗号采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
Starry发布了新的文献求助10
3秒前
上官若男应助诺一44采纳,获得10
4秒前
酷波er应助Catalysis123采纳,获得10
4秒前
4秒前
林布林发布了新的文献求助10
5秒前
5秒前
xiaoyu123发布了新的文献求助10
5秒前
6秒前
zyq发布了新的文献求助10
6秒前
Hyp完成签到 ,获得积分10
8秒前
9秒前
高兴梦竹发布了新的文献求助10
9秒前
9秒前
时势造英雄完成签到 ,获得积分10
9秒前
任蛹完成签到,获得积分10
10秒前
高兴幼旋发布了新的文献求助10
10秒前
wx完成签到,获得积分10
10秒前
11秒前
情怀应助zengyangyu采纳,获得30
11秒前
bkagyin应助阁下宛歆采纳,获得10
12秒前
12秒前
13秒前
犇骉完成签到,获得积分10
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助100
15秒前
15秒前
latata发布了新的文献求助10
15秒前
16秒前
17秒前
爱笑苡给爱笑苡的求助进行了留言
17秒前
17秒前
18秒前
lls发布了新的文献求助10
18秒前
xu发布了新的文献求助10
18秒前
水木年华发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933907
求助须知:如何正确求助?哪些是违规求助? 4201940
关于积分的说明 13055538
捐赠科研通 3976004
什么是DOI,文献DOI怎么找? 2178697
邀请新用户注册赠送积分活动 1195062
关于科研通互助平台的介绍 1106433