Spatial bias in the GBIF database and its effect on modeling species' geographic distributions

分布(数学) 数据质量 物种分布 空间分布 数据库 取样偏差 空间数据库 航程(航空) 空间分析 计算机科学 地理 数据挖掘 统计 生态学 样本量测定 数学 栖息地 生物 运营管理 数学分析 复合材料 经济 公制(单位) 材料科学
作者
Jan Beck,Marianne Böller,Andreas Erhardt,Wolfgang Schwanghart
出处
期刊:Ecological Informatics [Elsevier]
卷期号:19: 10-15 被引量:574
标识
DOI:10.1016/j.ecoinf.2013.11.002
摘要

Species distribution modeling, in combination with databases of specimen distribution records, is advocated as a solution to the problem of distributional data limitation in biogeography and ecology. The global biodiversity information facility (GBIF), a portal that collates digitized collection and survey data, is the largest online provider of distribution records. However, all distributional databases are spatially biassed due to uneven effort of sampling, data storage and mobilization. Such bias is particularly pronounced in GBIF, where nation-wide differences in funding and data sharing lead to huge differences in contribution to GBIF. We use a common Eurasian butterfly (Aglais urticae) as an exemplar taxon to provide evidence that range model quality is decreasing due to the spatial clustering of distributional records in GBIF. Furthermore, we show that such loss of model quality would go unnoticed with standard methods of model quality evaluation. Using evaluations of model predictions of the Swiss distribution of the species, we compare distribution models of full data with data where a subsampling procedure removes spatial bias at the cost of record numbers, but not of spatial extent of records. We show that data with less spatial bias produce better predictive models even though they are based on less input data. Our subsampling routine may therefore be a suitable method to reduce the impact of spatial bias to species distribution models. Our results warn of automatized applications of species distribution models to distributional databases (as has been advocated and implemented), as internal model evaluation did not show the decline of model quality with increased spatial bias (but rather the opposite) while expert evaluation clearly did.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钰泠完成签到 ,获得积分10
刚刚
刚刚
王五完成签到,获得积分10
刚刚
猪猪hero应助细心的语蓉采纳,获得10
刚刚
是苗苗丫完成签到,获得积分10
2秒前
olivia完成签到,获得积分10
2秒前
2秒前
Zoey Young发布了新的文献求助10
3秒前
雪雪啊发布了新的文献求助10
3秒前
3秒前
方北完成签到,获得积分10
4秒前
964230130发布了新的文献求助10
4秒前
4秒前
深情安青应助翟翟采纳,获得10
4秒前
hhhh777完成签到 ,获得积分10
4秒前
躺在云上看星星完成签到,获得积分10
4秒前
Deb完成签到,获得积分20
4秒前
一棵树发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
NXK发布了新的文献求助10
6秒前
6秒前
木月月复习了嘛完成签到,获得积分10
6秒前
跳跃的白云完成签到,获得积分10
7秒前
王小嘻完成签到,获得积分10
7秒前
Michael发布了新的文献求助10
7秒前
muta完成签到,获得积分10
7秒前
庾储完成签到,获得积分10
7秒前
沉默的婴发布了新的文献求助10
7秒前
不知道在干嘛完成签到,获得积分10
7秒前
巫马炎彬完成签到,获得积分0
8秒前
文章快快来完成签到,获得积分10
8秒前
cymxyqf159完成签到,获得积分10
8秒前
大白完成签到 ,获得积分10
8秒前
9秒前
hpwan发布了新的文献求助10
9秒前
我是老大应助卡卡采纳,获得10
10秒前
MHSCS完成签到,获得积分10
10秒前
10秒前
11秒前
ypp完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413904
求助须知:如何正确求助?哪些是违规求助? 4530767
关于积分的说明 14125053
捐赠科研通 4446058
什么是DOI,文献DOI怎么找? 2439334
邀请新用户注册赠送积分活动 1431442
关于科研通互助平台的介绍 1409123