Spatial bias in the GBIF database and its effect on modeling species' geographic distributions

分布(数学) 数据质量 物种分布 空间分布 数据库 取样偏差 空间数据库 航程(航空) 空间分析 计算机科学 地理 数据挖掘 统计 生态学 样本量测定 数学 栖息地 生物 运营管理 数学分析 复合材料 经济 公制(单位) 材料科学
作者
Jan Beck,Marianne Böller,Andreas Erhardt,Wolfgang Schwanghart
出处
期刊:Ecological Informatics [Elsevier]
卷期号:19: 10-15 被引量:574
标识
DOI:10.1016/j.ecoinf.2013.11.002
摘要

Species distribution modeling, in combination with databases of specimen distribution records, is advocated as a solution to the problem of distributional data limitation in biogeography and ecology. The global biodiversity information facility (GBIF), a portal that collates digitized collection and survey data, is the largest online provider of distribution records. However, all distributional databases are spatially biassed due to uneven effort of sampling, data storage and mobilization. Such bias is particularly pronounced in GBIF, where nation-wide differences in funding and data sharing lead to huge differences in contribution to GBIF. We use a common Eurasian butterfly (Aglais urticae) as an exemplar taxon to provide evidence that range model quality is decreasing due to the spatial clustering of distributional records in GBIF. Furthermore, we show that such loss of model quality would go unnoticed with standard methods of model quality evaluation. Using evaluations of model predictions of the Swiss distribution of the species, we compare distribution models of full data with data where a subsampling procedure removes spatial bias at the cost of record numbers, but not of spatial extent of records. We show that data with less spatial bias produce better predictive models even though they are based on less input data. Our subsampling routine may therefore be a suitable method to reduce the impact of spatial bias to species distribution models. Our results warn of automatized applications of species distribution models to distributional databases (as has been advocated and implemented), as internal model evaluation did not show the decline of model quality with increased spatial bias (but rather the opposite) while expert evaluation clearly did.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zik应助快乐小子采纳,获得10
1秒前
张YS发布了新的文献求助10
1秒前
wenhui完成签到,获得积分10
1秒前
1秒前
hahaya发布了新的文献求助10
2秒前
文献小当家完成签到,获得积分10
2秒前
百里静枫发布了新的文献求助10
2秒前
kingwill发布了新的文献求助30
2秒前
dsdingding完成签到,获得积分10
2秒前
夕荀发布了新的文献求助10
3秒前
上官若男应助默默水蓝采纳,获得10
3秒前
跳跃的翼完成签到,获得积分10
3秒前
hezi完成签到,获得积分10
3秒前
3秒前
沐阳发布了新的文献求助10
5秒前
琪琪完成签到,获得积分10
5秒前
v3688e完成签到,获得积分10
5秒前
5秒前
12234完成签到 ,获得积分10
6秒前
Daisy发布了新的文献求助10
6秒前
6秒前
浮游应助Dora采纳,获得10
7秒前
桂鱼完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
wuyoung完成签到,获得积分10
7秒前
嗯哼完成签到,获得积分20
8秒前
moon完成签到,获得积分10
9秒前
丘比特应助冒尖竹笋儿采纳,获得10
9秒前
义气的钥匙完成签到,获得积分10
9秒前
领导范儿应助天天小女孩采纳,获得10
9秒前
天天快乐应助ri_290采纳,获得10
9秒前
蓝蓝发布了新的文献求助10
10秒前
10秒前
10秒前
ding应助htzy采纳,获得10
10秒前
feiyuzhang发布了新的文献求助10
11秒前
酷波er应助嗯嗯哈哈采纳,获得10
11秒前
Arthur Zhu完成签到,获得积分10
11秒前
小月亮完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997