计算机科学
尖峰神经网络
人工智能
Spike(软件开发)
人工神经网络
峰值时间相关塑性
模式识别(心理学)
培训(气象学)
图层(电子)
学习规律
算法
机器学习
突触可塑性
生物化学
化学
物理
受体
软件工程
有机化学
气象学
作者
Thomas J. Strain,Liam McDaid,T.M. McGinnity,Liam Maguire,H. Sayers
标识
DOI:10.1142/s0129065710002553
摘要
This paper proposes a supervised training algorithm for Spiking Neural Networks (SNNs) which modifies the Spike Timing Dependent Plasticity (STDP)learning rule to support both local and network level training with multiple synaptic connections and axonal delays. The training algorithm applies the rule to two and three layer SNNs, and is benchmarked using the Iris and Wisconsin Breast Cancer (WBC) data sets. The effectiveness of hidden layer dynamic threshold neurons is also investigated and results are presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI