NDVI—crop monitoring and early yield assessment of Burkina Faso

归一化差异植被指数 线性回归 回归分析 数学 产量(工程) 简单线性回归 回归 残余物 趋势分析 地理 统计 环境科学 气候学 自然地理学 气候变化 生态学 算法 地质学 生物 冶金 材料科学
作者
S.M.E. Groten
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:14 (8): 1495-1515 被引量:257
标识
DOI:10.1080/01431169308953983
摘要

Abstract On a 1984-1989 series of ARTEMIS-NDVI data derived from the NOAA-AVHRR sensor a case study on crop monitoring and early crop yield forecasting was elaborated for the provinces of Burkina Faso. In order to remove residual effects of clouds and other atmospheric influences on 10-day maximum NDVI images, a conditional temporal interpolation method was applied. Various NDVI regression parameters were compared. For the seven northern provinces, a simple linear regression based on averaged maximum 10-daily or monthly NDVI values proved to be superior to regressions based on the integrated NDVt and on NDVI increments. Multiple regressions led to significantly higher correlation coefficients, but only towards the end of the growing season (up to r2 = 087). The simple linear regression was also found valid for a part of the central and southern provinces. The yields of the majority of the provinces however was best approximated using one second-order polynomial equation. A test of the regressions on 1989 data showed a forecast error percentage of less than 15 per cent for half of the 30 provinces in August, approximately 2 months before harvest. In the other half of the provinces, high forecast errors occurred mainly due to a locust invasion, excessive rainfall in August and drought in September, after the time of the forecast. Therefore correction factors for the occurrence of extreme pest and other problems have to be included in the model in close cooperation with the relevant organizations. Some of these problems could however be assessed indirectly from the NDVI dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助无情的白桃采纳,获得10
刚刚
sommer12345完成签到 ,获得积分10
刚刚
润润轩轩发布了新的文献求助10
1秒前
丁昆完成签到,获得积分10
3秒前
ding应助热情的阿猫桑采纳,获得10
5秒前
我是老大应助麦麦采纳,获得10
5秒前
Lyven发布了新的文献求助30
5秒前
xinxin完成签到,获得积分10
6秒前
玩命的靖仇完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
微纳组刘同完成签到,获得积分10
8秒前
haojiaolv完成签到,获得积分10
9秒前
9秒前
9秒前
orixero应助Twikky采纳,获得10
10秒前
安玖完成签到,获得积分10
10秒前
dyh6802发布了新的文献求助10
11秒前
拉长的忆南完成签到,获得积分10
12秒前
镜哥完成签到,获得积分10
12秒前
garyaa完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
17完成签到,获得积分10
13秒前
今后应助冷静的毛豆采纳,获得20
13秒前
13秒前
小马哥36发布了新的文献求助10
13秒前
ttttttuu发布了新的文献求助10
13秒前
甜美的秋凌完成签到,获得积分10
14秒前
10发布了新的文献求助10
15秒前
高高完成签到 ,获得积分10
15秒前
AAAAAAAAAAA发布了新的文献求助10
15秒前
16秒前
wxaaaa完成签到,获得积分10
16秒前
李爱国应助dd采纳,获得10
17秒前
18秒前
Jasper应助感性的凉面采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794