天然有机质
化学
溶解有机碳
质谱法
傅里叶变换离子回旋共振
吸附
有机质
水处理
地表水
环境化学
热解
色谱法
环境科学
有机化学
环境工程
作者
Anu Matilainen,Egil T. Gjessing,Tanja Lahtinen,Leif Hed,Amit Bhatnagar,Mika Sillanpää
出处
期刊:Chemosphere
[Elsevier]
日期:2011-02-12
卷期号:83 (11): 1431-1442
被引量:669
标识
DOI:10.1016/j.chemosphere.2011.01.018
摘要
Natural organic matter (NOM) is found in all surface, ground and soil waters. During recent decades, reports worldwide show a continuing increase in the color and NOM of the surface water, which has an adverse affect on drinking water purification. For several practical and hygienic reasons, the presence of NOM is undesirable in drinking water. Various technologies have been proposed for NOM removal with varying degrees of success. The properties and amount of NOM, however, can significantly affect the process efficiency. In order to improve and optimise these processes, the characterisation and quantification of NOM at different purification and treatment processes stages is important. It is also important to be able to understand and predict the reactivity of NOM or its fractions in different steps of the treatment. Methods used in the characterisation of NOM include resin adsorption, size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and fluorescence spectroscopy. The amount of NOM in water has been predicted with parameters including UV–Vis, total organic carbon (TOC), and specific UV-absorbance (SUVA). Recently, methods by which NOM structures can be more precisely determined have been developed; pyrolysis gas chromatography-mass spectrometry (Py-GC–MS), multidimensional NMR techniques, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The present review focuses on the methods used for characterisation and quantification of NOM in relation to drinking water treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI