Assessing the Performance of Prediction Models

布里氏评分 判别式 接收机工作特性 一致性 统计的 计算机科学 统计 预测建模 校准 机器学习 拟合优度 人工智能 残余物 绘图(图形) 数据挖掘 数学 医学 内科学 算法
作者
Ewout W. Steyerberg,Andrew J. Vickers,Nancy R. Cook,Thomas A. Gerds,Mithat Gönen,Nancy A. Obuchowski,Michael Pencina,Michael W. Kattan
出处
期刊:Epidemiology [Lippincott Williams & Wilkins]
卷期号:21 (1): 128-138 被引量:3795
标识
DOI:10.1097/ede.0b013e3181c30fb2
摘要

The performance of prediction models can be assessed using a variety of methods and metrics. Traditional measures for binary and survival outcomes include the Brier score to indicate overall model performance, the concordance (or c) statistic for discriminative ability (or area under the receiver operating characteristic [ROC] curve), and goodness-of-fit statistics for calibration. Several new measures have recently been proposed that can be seen as refinements of discrimination measures, including variants of the c statistic for survival, reclassification tables, net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Moreover, decision–analytic measures have been proposed, including decision curves to plot the net benefit achieved by making decisions based on model predictions. We aimed to define the role of these relatively novel approaches in the evaluation of the performance of prediction models. For illustration, we present a case study of predicting the presence of residual tumor versus benign tissue in patients with testicular cancer (n = 544 for model development, n = 273 for external validation). We suggest that reporting discrimination and calibration will always be important for a prediction model. Decision-analytic measures should be reported if the predictive model is to be used for clinical decisions. Other measures of performance may be warranted in specific applications, such as reclassification metrics to gain insight into the value of adding a novel predictor to an established model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiao完成签到,获得积分10
刚刚
123456完成签到,获得积分10
1秒前
1秒前
小阳发布了新的文献求助10
2秒前
细辛发布了新的文献求助10
2秒前
4秒前
生动路人应助调皮的浩天采纳,获得10
4秒前
4秒前
4秒前
QQ应助科研通管家采纳,获得20
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
孙福禄应助科研通管家采纳,获得10
5秒前
科研助手6应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
谢许杯商应助科研通管家采纳,获得10
5秒前
qin希望应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
科研助手6应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
孙福禄应助科研通管家采纳,获得10
5秒前
5秒前
Owen应助科研通管家采纳,获得20
5秒前
彭于晏应助科研通管家采纳,获得10
6秒前
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
咚咚发布了新的文献求助30
6秒前
6633完成签到,获得积分10
7秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020