Assessing the Performance of Prediction Models

布里氏评分 判别式 接收机工作特性 一致性 统计的 计算机科学 统计 预测建模 校准 机器学习 拟合优度 人工智能 残余物 绘图(图形) 数据挖掘 数学 医学 内科学 算法
作者
Ewout W. Steyerberg,Andrew J. Vickers,Nancy R. Cook,Thomas A. Gerds,Mithat Gönen,Nancy A. Obuchowski,Michael Pencina,Michael W. Kattan
出处
期刊:Epidemiology [Ovid Technologies (Wolters Kluwer)]
卷期号:21 (1): 128-138 被引量:3795
标识
DOI:10.1097/ede.0b013e3181c30fb2
摘要

The performance of prediction models can be assessed using a variety of methods and metrics. Traditional measures for binary and survival outcomes include the Brier score to indicate overall model performance, the concordance (or c) statistic for discriminative ability (or area under the receiver operating characteristic [ROC] curve), and goodness-of-fit statistics for calibration. Several new measures have recently been proposed that can be seen as refinements of discrimination measures, including variants of the c statistic for survival, reclassification tables, net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Moreover, decision–analytic measures have been proposed, including decision curves to plot the net benefit achieved by making decisions based on model predictions. We aimed to define the role of these relatively novel approaches in the evaluation of the performance of prediction models. For illustration, we present a case study of predicting the presence of residual tumor versus benign tissue in patients with testicular cancer (n = 544 for model development, n = 273 for external validation). We suggest that reporting discrimination and calibration will always be important for a prediction model. Decision-analytic measures should be reported if the predictive model is to be used for clinical decisions. Other measures of performance may be warranted in specific applications, such as reclassification metrics to gain insight into the value of adding a novel predictor to an established model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐路灯完成签到,获得积分10
刚刚
紧张的梦岚应助跳跃乘风采纳,获得20
刚刚
简单水杯完成签到 ,获得积分10
刚刚
大胆的尔岚完成签到,获得积分10
1秒前
1秒前
Sene完成签到,获得积分10
1秒前
哈哈大笑发布了新的文献求助10
1秒前
叶飞荷发布了新的文献求助10
2秒前
2秒前
竹筏过海应助嘎啦嘎嘎啦采纳,获得40
2秒前
2秒前
123456完成签到 ,获得积分10
3秒前
3秒前
4秒前
乐乐乐乐乐完成签到,获得积分10
4秒前
Q.curiosity完成签到,获得积分10
5秒前
丘比特应助我行我素采纳,获得10
5秒前
ClaudiaCY完成签到,获得积分10
5秒前
5秒前
科研天才完成签到,获得积分10
6秒前
GHOST发布了新的文献求助10
6秒前
6秒前
7秒前
谢家宝树发布了新的文献求助10
7秒前
HEIKU应助Ying采纳,获得10
8秒前
Zzz完成签到,获得积分10
8秒前
LC发布了新的文献求助20
8秒前
刘怀蕊完成签到,获得积分10
9秒前
9秒前
LLL发布了新的文献求助10
9秒前
跳跃乘风完成签到,获得积分10
10秒前
Anxinxin完成签到,获得积分10
10秒前
阳佟冬卉完成签到,获得积分10
11秒前
Silence发布了新的文献求助10
11秒前
11秒前
通通通发布了新的文献求助10
12秒前
帅气的秘密完成签到 ,获得积分10
12秒前
领导范儿应助马建国采纳,获得10
12秒前
lysixsixsix完成签到,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762