已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Functional connectivity in fMRI: A modeling approach for estimation and for relating to local circuits

断开 精神分裂症(面向对象编程) 功能磁共振成像 神经影像学 生物神经网络 神经科学 颞叶皮质 神经功能成像 计算机科学 连接(主束) 人工智能 心理学 功能连接 模式识别(心理学) 数学 法学 程序设计语言 政治学 几何学
作者
Ransom K. Winder,Carlos R. Cortes,James A. Reggia,Malle A. Tagamets
出处
期刊:NeuroImage [Elsevier BV]
卷期号:34 (3): 1093-1107 被引量:22
标识
DOI:10.1016/j.neuroimage.2006.10.008
摘要

Although progress has been made in relating neuronal events to changes in brain metabolism and blood flow, the interpretation of functional neuroimaging data in terms of the underlying brain circuits is still poorly understood. Computational modeling of connection patterns both among and within regions can be helpful in this interpretation. We present a neural network model of the ventral visual pathway and its relevant functional connections. This includes a new learning method that adjusts the magnitude of interregional connections in order to match experimental results of an arbitrary functional magnetic resonance imaging (fMRI) data set. We demonstrate that this method finds the appropriate connection strengths when trained on a model system with known, randomly chosen connection weights. We then use the method for examining fMRI results from a one-back matching task in human subjects, both healthy and those with schizophrenia. The results discovered by the learning method support previous findings of a disconnection between left temporal and frontal cortices in the group with schizophrenia and a concomitant increase of right-sided temporo-frontal connection strengths. We then demonstrate that the disconnection may be explained by reduced local recurrent circuitry in frontal cortex. This method extends currently available methods for estimating functional connectivity from human imaging data by including both local circuits and features of interregional connections, such as topography and sparseness, in addition to total connection strengths. Furthermore, our results suggest how fronto-temporal functional disconnection in schizophrenia can result from reduced local synaptic connections within frontal cortex rather than compromised interregional connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
za发布了新的文献求助10
1秒前
XMC2022发布了新的文献求助10
1秒前
4秒前
充电宝应助罗大壮采纳,获得10
4秒前
WWW完成签到 ,获得积分10
4秒前
多喝温水完成签到 ,获得积分10
4秒前
5秒前
wise111发布了新的文献求助10
5秒前
6秒前
李爱国应助za采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得30
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
正直乘云发布了新的文献求助10
8秒前
XMC2022完成签到,获得积分10
9秒前
9秒前
aloha01发布了新的文献求助10
9秒前
suy发布了新的文献求助10
10秒前
11秒前
13秒前
二二春完成签到,获得积分10
13秒前
万默完成签到 ,获得积分10
13秒前
Dr.Wei完成签到,获得积分10
15秒前
罗大壮发布了新的文献求助10
16秒前
蓝白完成签到,获得积分10
17秒前
17秒前
18秒前
今后应助Tonson采纳,获得10
20秒前
suy完成签到,获得积分10
20秒前
orixero应助噗噗xie采纳,获得200
21秒前
22秒前
所所应助朱冰蓝采纳,获得10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125917
求助须知:如何正确求助?哪些是违规求助? 4329582
关于积分的说明 13491436
捐赠科研通 4164515
什么是DOI,文献DOI怎么找? 2282992
邀请新用户注册赠送积分活动 1284044
关于科研通互助平台的介绍 1223448