Functional connectivity in fMRI: A modeling approach for estimation and for relating to local circuits

断开 精神分裂症(面向对象编程) 功能磁共振成像 神经影像学 生物神经网络 神经科学 颞叶皮质 神经功能成像 计算机科学 连接(主束) 人工智能 心理学 功能连接 模式识别(心理学) 数学 法学 程序设计语言 政治学 几何学
作者
Ransom K. Winder,Carlos R. Cortes,James A. Reggia,Malle A. Tagamets
出处
期刊:NeuroImage [Elsevier]
卷期号:34 (3): 1093-1107 被引量:22
标识
DOI:10.1016/j.neuroimage.2006.10.008
摘要

Although progress has been made in relating neuronal events to changes in brain metabolism and blood flow, the interpretation of functional neuroimaging data in terms of the underlying brain circuits is still poorly understood. Computational modeling of connection patterns both among and within regions can be helpful in this interpretation. We present a neural network model of the ventral visual pathway and its relevant functional connections. This includes a new learning method that adjusts the magnitude of interregional connections in order to match experimental results of an arbitrary functional magnetic resonance imaging (fMRI) data set. We demonstrate that this method finds the appropriate connection strengths when trained on a model system with known, randomly chosen connection weights. We then use the method for examining fMRI results from a one-back matching task in human subjects, both healthy and those with schizophrenia. The results discovered by the learning method support previous findings of a disconnection between left temporal and frontal cortices in the group with schizophrenia and a concomitant increase of right-sided temporo-frontal connection strengths. We then demonstrate that the disconnection may be explained by reduced local recurrent circuitry in frontal cortex. This method extends currently available methods for estimating functional connectivity from human imaging data by including both local circuits and features of interregional connections, such as topography and sparseness, in addition to total connection strengths. Furthermore, our results suggest how fronto-temporal functional disconnection in schizophrenia can result from reduced local synaptic connections within frontal cortex rather than compromised interregional connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张包包发布了新的文献求助10
刚刚
mengjie发布了新的文献求助10
刚刚
丰知然举报mwy求助涉嫌违规
1秒前
ZhouYW完成签到,获得积分10
2秒前
香蕉觅云应助JiaY采纳,获得10
2秒前
高高亿先发布了新的文献求助10
2秒前
gxudmy完成签到,获得积分10
2秒前
Singularity应助LL采纳,获得10
4秒前
英俊的铭应助lily采纳,获得10
4秒前
彭于晏应助纯真硬币采纳,获得10
4秒前
谷高高完成签到 ,获得积分10
5秒前
充电宝应助pangpang采纳,获得10
6秒前
tengy完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
高高亿先完成签到,获得积分10
9秒前
9秒前
小熊完成签到 ,获得积分10
9秒前
9秒前
稽TR完成签到,获得积分10
9秒前
万能图书馆应助致橡树采纳,获得10
10秒前
12秒前
qfdldxwz完成签到,获得积分10
12秒前
秋海棠发布了新的文献求助10
12秒前
12秒前
yD发布了新的文献求助10
12秒前
研友_VZG7GZ应助shaohua2011采纳,获得10
13秒前
wanci应助飘逸数据线采纳,获得10
13秒前
13秒前
路瑶瑶完成签到,获得积分10
14秒前
认真路灯完成签到 ,获得积分10
16秒前
16秒前
16秒前
清新的愚志完成签到,获得积分10
17秒前
李爱国应助路瑶瑶采纳,获得10
18秒前
1111111222发布了新的文献求助10
19秒前
NexusExplorer应助高贵的子默采纳,获得10
20秒前
baekhyun完成签到,获得积分10
20秒前
101发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3451608
求助须知:如何正确求助?哪些是违规求助? 3047073
关于积分的说明 9008901
捐赠科研通 2735980
什么是DOI,文献DOI怎么找? 1500473
科研通“疑难数据库(出版商)”最低求助积分说明 693628
邀请新用户注册赠送积分活动 691907