Optical trapping of gold nanoparticles is experimentally demonstrated using radially and azimuthally polarized beams. The transverse optical trapping stiffness of gold nanoparticles is measured. The radially polarized beam exhibits a higher trapping efficiency than the azimuthally polarized beam and the Gaussian beam. The transverse stiffness of particles with different diameters is measured experimentally and calculated via the discrete-dipole approximation method, and good agreement between theory and experiment is found.